Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Chemicals and Reagents
3.3. Liquid Chromatography
3.4. SC-CO2 Extraction
3.5. Mass Spectrometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pojarkova, A.I. Genus Ericaceae, D.K.-vacciniaceous. Flora USSR 1952, 18, 26–93. Available online: https://docviewer.yandex.ru/view/0/?page=1&*=G3rUdUDjrwwhelX3asXdHS%2Fw9897InVybCI6InlhLWRpc2stcHVibGljOi8vN0x0R0lZV1VYaEhFcmRwdTFtTmprVnJoNGl4dmhDMDhsbVBpcjROcjVnaz0iLCJ0aXRsZSI6ItCk0JvQntCg0JBf0KHQodCh0KBf0KIxOF8xOTUyLmRqdnUiLCJub2lmcmFtZSI6ZmFsc2UsInVpZCI6IjAiLCJ0cyI6MTU5NzU4Mjc3MzcwNywieXUiOiI4OTgyMDE4MDYxNTU5MDQ4Mzk5In0%3D (accessed on 29 June 2020). (In Russian).
- Aleksandrova, M.S. Rhododendrons of Natural Flora of the USSR; Nauka: Moscow, Russia, 1975; p. 112. Available online: https://docplayer.ru/42008573-Rododendrony-prirodnoy-flory-sssr.html (accessed on 29 June 2020). (In Russian)
- Zaytseva, G.Y.; Ambros, E.V.; Karakulov, A.V.; Novikova, T.I. Flow cytometric determination of genome size and ploidy level of some frost-resistant cultivars and species of Rhododendron L. native to Asian Russia. Botanica Pacifica. Bot Pac. 2018, 7, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Belousova, N.I.; Khan, V.A.; Tkachev, A.V. The chemical composition of essential oil of Rhododendron. Khimiya Rastitel’nogo Syr′iya (Chem. Plant Raw Mater.) 1999, 3, 5–38. Available online: https://elibrary.ru/item.asp?id=9444189 (accessed on 29 June 2020). (In Russian).
- Belousov, M.V.; Komissarenko, N.F.; Berezovskaya, T.P.; Tochkova, T.V. Content of flavonoids and coumarins in the Siberian—Far Eastern species of the Ericaceae family. Rastit. Resur. 1994, 4, 44–47. Available online: https://www.elibrary.ru/item.asp?id=20162300 (accessed on 29 June 2020). (In Russian).
- Varlygina, T.I.; Kamelin, R.V.; Kiseleva, K.V. Red Data Book of Russian Federation; KMK: Moskow, Russia, 2008; p. 855. ISBN 978-5-87317-476-8. [Google Scholar]
- Firsov, G.A.; Egorov, A.A.; Byalt, V.V.; Neverovsky, V.J.; Orlova, L.V.; Volchanskaya, A.V.; Lavrentyev, N.V. Arboreal plants of the Red Data Book of Russia in collection of Saint Petersburg Forest-Technical Academy. Hortus Botanicus. 2010, 5, 1–16. Available online: https://www.elibrary.ru/item.asp?id=21827419 (accessed on 29 June 2020). [CrossRef]
- Khokhryakov, A.P.; Mazurenko, M.T. Vascular plants of the Soviet Far East. Science 1991, 5, 119. Available online: https://www.elibrary.ru/author_items.asp (accessed on 29 June 2020). (In Russian).
- Hubich, A.I.; Puchkova, K.V.; Zalesskaya, N.A.; Kryuchkova, N.V. The investigation of the adaptogenic properties of Rhododendron adamsii Rehder. on experimental models in vivo. J. Belarus. State Univ. Biol. 2018, 1, 60–68. (In Russian) [Google Scholar]
- Mirovich, V.M.; Konenkina, T.A.; Fedoseeva, G.M. Qualitative structure od essential oil of Rhododendron adamsii and parvifolium, growing in East Siberia. Siberian Med. J. 2008, 76, 79–82. Available online: https://www.elibrary.ru/item.asp?id=17844859 (accessed on 29 June 2020). (In Russian).
- Belousova, N.I.; Khan, V.A. Bicyclic monoterpenoids of the essential oil of Ledum palustre. Chem. Nat. Compd. 1990, 5, 627–629. [Google Scholar]
- Kurshakova, G.V.; Fedorov, A.A.; Yakimov, P.A. Some data on the chemical composition and pharmacological effect of rhododendron Adams–Rhododendron adamsii Rend. Trudy Botanicheskogo instituta im. V. L. Komarova AN SSSR 1961, V, 216–220. (In Russian) [Google Scholar]
- Belousov, M.V.; Berezovskaya, T.P.; Komissarenko, N.F.; Tikhonova, L.A. Flavonoids of Siberian and Far-Eastern species of rhododendrons of the subsgenus Rhodorastrum. Chem. Nat. Compd. 1998, 34, 510–511. [Google Scholar] [CrossRef]
- Fini, A.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Tattini, M. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant. Signal. Behav. 2011, 6, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Rogachev, A.D. Phytochemical study of Rhododendron Adamsii Rheder. Ph.D.’s Thesis, Novosibirsk University, Novosibirsk, Russia, 2009. (In Russian). [Google Scholar]
- Rogachev, A.D.; Fomenko, V.V.; Sal’nikova, O.I.; Pokrovskii, L.M.; Salakhutdinov, N.F. Comparative analysis of essential oil compositions from leaves and stems of Rhododendron adamsii, R. aureum, and R. dauricum. Chem. Nat. Compd. 2006, 42, 426–430. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zacharenko, A.M.; Kalenik, T.K.; Nosyrev, A.E.; Stratidakis, A.K.; Mezhuev, Y.O.; Burykina, T.I.; Nicolae, A.C.; Arsene, A.L.; Tsatsakis, A.M.; et al. Supercritical fluid technology and supercritical fluid chromatography for application in ginseng extracts. Farmacia 2019, 67, 202–212. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Shin, T.-S.; Chung, G.; Golokhvast, K. Supercritical CO2 Extraction and Identification of Ginsenosides in Russian and North Korean Ginseng by HPLC with Tandem Mass Spectrometry. Molecules 2020, 25, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozov, Y.A.; Pupykina, K.A.; Blagorazumnaya, N.V.; Aliev, A.M.; Morozova, E.V. Comparative analysis of carbon dioxide extracts from plant material of Schisandra chinensis: Leaves, woody stems, rhizomes with roots. Med. Bull. Bashkortostan. 2018, 13, 46–51. [Google Scholar]
- Aliev, A.M.; Radjabov, G.K.; Musaev, A.M. Dynamics of supercritical extraction of biological active substances from the Juniperus communis var. saxatillis. J. Supercrit. Fluids 2015, 102, 66–72. [Google Scholar] [CrossRef]
- Rovetto, L.J.; Aieta, N.V. Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. J. Supercrit. Fluids 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Sesti Osseo, L.; Reverchon, E.; Adami, R. Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids. 2018, 133, 65–69. [Google Scholar] [CrossRef]
- Mehariya, S.; Iovine, A.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Casella, P.; Karatza, D.; Marino, T.; Musmarra, D.; et al. Supercritical fluid extraction of lutein from Scenedesmus almeriensis. Molecules 2019, 24, 1324. [Google Scholar] [CrossRef] [Green Version]
- Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Di Sanzo, G.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 extraction. Molecules 2019, 24, 2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senica, M.; Stampar, F.; Miculic-Petkovsek, M. Different extraction processes affect the metabolites in blue honeysuckle (Lonicera caerulea L. subsp. edulis) food products. Turk. J. Agric. For. 2019, 43, 576–585. [Google Scholar] [CrossRef]
- Colak, A.M.; Okatan, V.; Polat, M.; Guclu, S.F. Different harvest times affect market quality of Lycium barbarum L. berries. Turk. J. Agric. For. 2019, 43, 326–333. [Google Scholar] [CrossRef]
- Baldino, L.; Reverchon, E. Challenges in the production of pharmaceutical and food related compounds by SC-CO2 processing of vegetable matter. J. Supercrit. Fluids 2018, 134, 269–273. [Google Scholar] [CrossRef]
- Popova, A.S.; Ivahnov, A.D.; Skrebets, T.E.; Bogolitsyn, K.G. Supercritical fluid extraction of carotenoids and chlorophyll from Ledum palustre. Khimiya Rastitel’nogo Syr’iya (Chem. Veg. Raw Mater.) 2018, 1, 61–66. (In Russian) [Google Scholar]
- Baananou, S.; Bagdonaite, E.; Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Boughattas, N.A. Supercritical CO2 extract and essential oil of aerial part of Ledum palustre L.—Chemical composition and anti-inflammatory activity. Nat. Prod. Res. 2015, 29, 999–1005. [Google Scholar] [CrossRef]
- Bukreyeva, T.V.; Shavarda, A.L.; Matusevich, O.V.; Morozov, M.A. Ursane, oleanane, lupine triterpenoids from leaves of Ledum palustre (Ericaceae) from North-West Russia. Rastit. Resur. 2013, 49, 395–403. (In Russian) [Google Scholar]
- Butkiene, R.; Sakociute, V.; Latvenaite, D.; Mockute, D. Composition of young and aged shoot essential oils of the wild Ledum palustre L. Chemija 2008, 19, 19–24. [Google Scholar]
- Buzuk, A.G.; Buzuk, G.N. The study of chemical variability of essential oil composition of Ledum palustre L., growing on the territory of the republic of Belarus. Vestnik Farmacii. 2016, 4, 18–25. (In Russian) [Google Scholar]
- Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A Review of traditional use based on current research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef]
- Dede, E.; Genc, N.; Elmastas, M.; Aksit, H.; Erenler, R. Chemical constituents Isolated from Rhododendron ungernii with Antioxidant Profile. Nat. Prod. J. 2019, 9, 238–243. [Google Scholar] [CrossRef]
- Ganina, M.M. and Popova, O.I. Content of phenolic compounds in shoots of Ledum procumbent (Ledum decumbens Lodd. ex Steud) growing on the territory of the Yamalo-nenets autonomous district. Khim.-Farm. Zh. 2015, 49, 33–35. [Google Scholar]
- Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Hu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B.; Williams, C.A. Leaf survey of flavonoids and simple phenols in the genus Rhododendron. Phytochemistry 1971, 10, 2727–2744. [Google Scholar] [CrossRef]
- Izotov, D.V.; Tagiltsev, Y.G.; Kolesnikova, R.D.; Tsyupko, V.A. Biologically active substances of Far-Eastern Labrador tea. Lesnoy J. 2010, 2, 24–30. Available online: https://www.elibrary.ru/item.asp?id=15198739 (accessed on 29 June 2020). (In Russian).
- Karpova, E.A.; Karakulov, A.V. Flavonoids of some Rhododendron species of flora of Siberia and the Far East. Khimiya Rastitel’nogo Syr’ya (Chem. Plant Raw Mater.) 2013, 2, 119–126. Available online: https://www.elibrary.ru/item.asp?id=20332638 (accessed on 29 June 2020). (In Russian).
- Karakulov, A.V.; Karpova, E.A.; Vasiliev, V.G. Ecological and geographical variation of morphometric parameters and flavonoid composition of Rhododendron parvifolium. Turczaninowia 2018, 21, 133–144. [Google Scholar]
- Korotaeva, M.S.; Belousov, M.V.; Fursa, N.S. Flavonoids and hydroxycinnamic acids content in Ledum palustre (Ericaceae) above-ground part. Rastit. Resur. 2008, 44, 66–75. Available online: https://www.elibrary.ru/item.asp?id=9940517 (accessed on 29 June 2020). (In Russian).
- Mirovich, V.M.; Fedoseeva, G.M.; Zjubr, T.P.; Fedoseev, A.P.; Paisova, O.I.; Kuklina, L.B. Elaboration of the method of receipt of the dry extract from sprouts of Rhododendron adamsii, having actoprotective and antimicrobic activity. Sibirskii medicinskii Zhurnal. 2006, 9, 96–98. (In Russian) [Google Scholar]
- Pandey, R.; Kumar, B. HPLC-OTOF-MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and heir interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Plyashechnik, M.A. Chemical composition of Ledum palustre L. essential oil under increasing nitrogen availability in soils of cryolitzone (Central Evenkia). Khimiya Rastitel’nogo Syr’iya (Chem. Plant Raw Mater.) 2012, 2, 139–144. (In Russian) [Google Scholar]
- Raal, A.; Orav, A.; Gretchushnikova, T. Composition of the essential oil of the Rhododendron tomentosum Harmaja from Estonia. Nat. Prod. Res. 2014, 28, 1091–1098. [Google Scholar] [CrossRef]
- Suzuki, H.; Sasaki, R.; Ogata, Y.; Nakamura, Y.; Sakurai, N.; Kitajima, M.; Takayama, H.; Kanaya, S.; Aoki, K.; Shibata, D.; et al. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 2008, 69, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Pokryshkin, S.A.; Bogolitsyn, K.G.; Ul’yanovskaya, O.S. Study of volatile compounds composition of Ledum palustre L. using the method of thermodesorption gas chromatography -mass spectrometry. Khimiya Rastitel’nogo Syr’iya (Chem. Plant Raw Mater.) 2014, 4, 153–161. (In Russian) [Google Scholar] [CrossRef]
- Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Pharm. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Zaytseva, N.V.; Pogulyaeva, I.A. Chromatographic Analysis of Chemical Composition of the Genus Rhododendron Plants Growing on the Mountain of Evota (South Yakutia). J. Chem. Chem. Eng. 2014, 8, 516–523. [Google Scholar]
- Jin, C.; Strembiski, W.; Kulchytska, Y.; Micetich, R.G.; Daneshtalab, M. Flavonoid glycosides from Ledum palustre L. subsp. decumbens (Ait.) Hulton. DARU. J. Pharm. Sci. 1999, 7, 4. [Google Scholar]
- Komarova, N.I.; Rogachev, A.D.; Chernyak, E.I.; Morozov, S.V.; Fomenko, V.V.; Salakhutdinov, N.F. Quantitative HPLC determination of main flavonoid content of Rhododendron adamsii leaves and stems. Chem. Nat. Compd. 2009, 45, 1. [Google Scholar] [CrossRef]
- Okhlopkova, Z.M.; Chirikova, N.K. Component composition analysis of essential oil of the Ledum palustre L., growing in Yakutia. Fundam. Res. 2012, 11, 1334–1336. [Google Scholar]
- Russian State Pharmacopeia XIII. 2016. Available online: http://pharmacopoeia.ru/en/gosudarstvennaya-farmakopeya-xiii-online-gf-13-online/ (accessed on 29 June 2020).
Sample Availability: Not available. |
No. | Species or Variety | Subgenus | Row |
---|---|---|---|
1 | Rh. sichotense Pojark.; Rh. micronulatum Pojark.; Rh. dauricum L.; Rh. ledebourii Pojark. | Rhodorastrum | Daurica Pojark. |
2 | Rh. parvifolium Adams [Rh. lapponicum (L.) Wahlenb.] | Osmothamnus Maximowicz | Parvifolia E. Busch |
3 | Rh. adamsii Rehd. [Rh. fragrans (Adams) Maxim.] | Fragrantia E. Busch |
No. | Temperature (°C) | Pressure (Bar) | CO2 Flow Rate (mL/min) | % Co-Solvent EtOH | Extraction Yield (mg/g) |
---|---|---|---|---|---|
1 | 50 | 300 | 30 | 1 | 1.23 |
2 | 50 | 350 | 50 | 2 | 3.27 |
3 | 50 | 370 | 30 | 1 | 3.25 |
4 | 50 | 400 | 50 | 1 | 4.15 |
5 | 60 | 300 | 30 | 2 | 5.81 |
6 | 60 | 350 | 30 | 2 | 7.12 |
7 | 60 | 370 | 50 | 1 | 10.86 |
8 | 60 | 400 | 30 | 2 | 8.13 |
9 | 70 | 300 | 30 | 1 | 7.15 |
10 | 70 | 350 | 50 | 1 | 7.28 |
11 | 70 | 370 | 30 | 1 | 8.10 |
12 | 70 | 400 | 30 | 1 | 7.90 |
NO. | Identification | Formula | Calculated Mass | Rh. adamsii (104) | Rh. adamsii (105) | Rh. adamsii (109) | Rh. adamsii (110) | Rh. adamsii (108) | Rh. adamsii (112) | Rh. adamsii (116) | Rh. adamsii (117) | Rh. adamsii (118) | Rh. adamsii (122) | Rh. adamsii (123) | Rh. sicho (175) | Rh. sicho (176) | Rh. sicho (177) | Rh. sicho (178) | Rh. sicho (190) | Rh. sicho (192) | Rh. sicho (193) | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Lepalol [5-(3-Furyl)-2-methyl-1-penten-3-ol | C10H14O2 | 166.217 | [31,45,48] | ||||||||||||||||||
2 | Caffeic acid [(2E)-3-(3,4-Dihydroxyphenyl)acrylic acid] | C9H8O4 | 180.1574 | [10,35,42,43,50] | ||||||||||||||||||
3 | Azelaic acid (Nonanedioic acid) | C9H16O4 | 188.2209 | [15,16] | ||||||||||||||||||
4 | Calamenene [Cis-Calamenene] | C15H22 | 202.3352 | [15,16,38] | ||||||||||||||||||
5 | Germacron | C15H22O | 218.3346 | [4,5,10,42,44] | ||||||||||||||||||
6 | Myristic acid (Tetradecanoic acid; N-Tetradecanoic acid) | C14H28O2 | 228.3709 | [15,16] | ||||||||||||||||||
7 | Pentadecanoic acid (Pentadecylic acid) | C15H30O2 | 242.3975 | [15,16] | ||||||||||||||||||
8 | Palmitoleic acid | C16H30O2 | 254.4082 | [15,16] | ||||||||||||||||||
9 | Cis-cyclopropan-9,10-hexadecanoic acid | C17H32O2 | 268.4348 | [15,16] | ||||||||||||||||||
10 | Linoleic acid (Linolic acid; Telfairic acid) | C18H32O2 | 280.4455 | [15,16,49] | ||||||||||||||||||
11 | Stearic acid (Octadecanoic acid; Stearophanic acid) | C18H36O2 | 284.4772 | [15,16] | ||||||||||||||||||
12 | Kaempferol | C15H10O6 | 286.2363 | [36,39,40,43,50] | ||||||||||||||||||
13 | Cis-cyclopropan-9,10-octadecanoic acid | C19H32O2 | 292.4562 | [15,16] | ||||||||||||||||||
14 | Nonadecanoic acid (N-Nonadecanoic acid) | C19H38O2 | 298.5038 | [15,16] | ||||||||||||||||||
15 | Kaempferol 5-methyl ether | C16H12O6 | 300.2629 | [39] | ||||||||||||||||||
16 | Farrerol | C17H16O5 | 300.3059 | [34,39] | ||||||||||||||||||
17 | Quercetin | C15H10O7 | 302.2357 | [34,36,39,40,43,50] | ||||||||||||||||||
18 | Dihydroquercetin (Taxifolin; Taxifoliol) | C15H12O7 | 304.2516 | [35,39,40] | ||||||||||||||||||
19 | Cannabigerorcinic acid (Cannabigerorcinolic acid; Cannabiorcogerolic acid | C18H24O4 | 304.3808 | [15,16] | ||||||||||||||||||
20 | Docosane | C22H46 | 310.6006 | [48] | ||||||||||||||||||
21 | 8-Demethyleucalyptin [5-Hydroxy-4′,7-dimetoxy-6-methylflavone; Pabalate; Sodium salicylate] | C18H16O5 | 312.3166 | [33] | ||||||||||||||||||
22 | Arachic acid (Arachidic acid; eicosanoic acid) | C20H40O2 | 312.5304 | [15,16] | ||||||||||||||||||
23 | Azaleatin [5-O-Methylquercetin] | C16H12O7 | 316.2623 | [10,39,41,42] | ||||||||||||||||||
24 | Myricetin | C15H10O8 | 318.2351 | [36,34,39,40,50] | ||||||||||||||||||
25 | Gossypetin [Articulatidin; Equisporol] | C15H10O8 | 318.2351 | [37] | ||||||||||||||||||
26 | Ampelopsin [Dihydromyricetin; Ampeloptin] | C15H12O8 | 320.251 | [39] | ||||||||||||||||||
27 | Heneicosanoic acid (Heneicosylic acid) | C21H42O2 | 326.557 | [15,16] | ||||||||||||||||||
28 | Myricetin 5-Methyl ether [5-O-Methylmyricetin] | C16H12O8 | 332.2617 | [39] | ||||||||||||||||||
29 | Esculin [Aesculin; Esculoside; Polichrome] | C15H16O9 | 340.2821 | [33,41] | ||||||||||||||||||
30 | Behenic acid (Docosanoic acid) | C22H44O2 | 340.5836 | [15,16] | ||||||||||||||||||
31 | Pentacosane (N-Pentacosane) | C25H52 | 352.6854 | [48] | ||||||||||||||||||
32 | Chlorogenic acid | C16H18O9 | 354.3087 | [10,35,42] | ||||||||||||||||||
33 | Scopolin [Scopoloside; Scopoletin-7-glucoside; Murrayin] | C16H18O9 | 354.3087 | [41] | ||||||||||||||||||
34 | Tricosanoic acid (N-Tricosanoic acid) | C23H46O2 | 354.6101 | [15,16] | ||||||||||||||||||
35 | Lignoceric acid (Tetracosanoic acid) | C24H48O2 | 368.6367 | [15,16] | ||||||||||||||||||
36 | Fraxin (Fraxetin-8-O-glucoside) | C16H18O10 | 370.3081 | [33] | ||||||||||||||||||
37 | Daurichromenic acid | C23H30O4 | 370.4819 | [15,16] | ||||||||||||||||||
38 | Pentacosanoic acid (N-Pentacosanoic acid) | C25H50O2 | 382.6633 | [15,16] | ||||||||||||||||||
39 | Fraxetin-7-O-beta-glucuronide | C16H16O11 | 384.2916 | [41] | ||||||||||||||||||
40 | Beta-Sitosterin [Beta-Sitosterol] | C29H50O | 414.7067 | [10,30,42] | ||||||||||||||||||
41 | Cyanidin-3-alpfa-l-arabinoside | C20H19O10 | 419.3589 | [10,42] | ||||||||||||||||||
42 | Montanic acid (Amyrin; Beta-Amyrenol) | C28H56O2 | 424.743 | [15,16] | ||||||||||||||||||
43 | Alpha-Amyrin [Viminalol] | C30H50O | 426.7174 | [30] | ||||||||||||||||||
44 | Lupeol [Fagarasterol; Clerodol; Monogynol B; Lupenol] | C30H50O | 426.7174 | [30] | ||||||||||||||||||
45 | Dihydroquercetin-3-arabinofuranoside | C20H16O11 | 432.3344 | [10,42] | ||||||||||||||||||
46 | Afzelin [ Kaempferol-3-Rhamnoside; Kaempferin] | C21H20O10 | 432.3775 | [39,40] | ||||||||||||||||||
47 | Quercetin-3-O-beta-xyloside (Reynoutrin; Quercetin 3-O-Beta-d-Xylopyranoside) | C20H17O11 | 433.3424 | [34] | ||||||||||||||||||
48 | Avicularin (Quercetin 3-Alpha-l-Arabinofuranoside; Avicularoside) | C20H18O11 | 434.3503 | [10,33,39,40,42] | ||||||||||||||||||
49 | Pentoside dihydroquercetin | 436 | [40] | |||||||||||||||||||
50 | Erithrodiol [3-beta-Erytrodiol] | C30H50O2 | 442.7168 | [30] | ||||||||||||||||||
51 | Uvaol | C30H50O2 | 442.7168 | [30] | ||||||||||||||||||
52 | Quercitrin [Quercetin 3-l- Rhamnoside; Quercetrin] | C21H20O11 | 448.3769 | [33,39,46] | ||||||||||||||||||
53 | Catechin-7-O-glucoside | C21H24O11 | 452.4087 | [34] | ||||||||||||||||||
54 | Micromeric acid | C30H46O3 | 454.6844 | [30] | ||||||||||||||||||
55 | Hyperoside (Quercetin 3-O-galactoside; Hyperin) | C21H20O12 | 464.3763 | [10,33,34,39,40,41,42] | ||||||||||||||||||
56 | Quercetin 3-O-glucoside [ Isoquercitrin] | C21H20O12 | 464.3763 | [33,46] | ||||||||||||||||||
57 | Alpha.-Tocopherol-Beta-d-Mannoside [Dihydro-2H-Chromen-6-YI Hexofuranoside] | C35H60O7 | 592.8467 | [48] |
No. | Identification | Formula | Calculated Mass | Observed Mass [M − H]− | Observed Mass [M + H]+ | Observed Mass [M + Na]+ | MS/MS Stage 2 Fragmentation | MS/MS Stage 3 Fragmentation | MS/MS Stage 4 Fragmentation | Species of Rhododendron |
---|---|---|---|---|---|---|---|---|---|---|
1 | Lepalol [5-(3-Furyl)-2-methyl-1-penten-3-ol | C10H14O2 | 166.217 | 165.06 | 147.01 | Rh. adamsii | ||||
2 | Caffeic acid [(2E)-3-(3,4-Dihydroxyphenyl) acrylic acid] | C9H8O4 | 180.1574 | 181.08 | 163.03; 135.11 | Rh. adamsii | ||||
3 | Azelaic acid [Nonanedioic acid] | C9H16O4 | 188.2209 | 210.09 | 192.12 | 175.06; 136.12 | Rh. adamsii | |||
4 | Calamenene [Cis-Calamenene] | C15H22 | 202.3352 | 203.09 | 147.05 | 119.06 | Rh. sichotense | |||
5 | Germacron | C15H22O | 218.3346 | 219.06 | 201.07; 149.07 | 159.07 | Rh. adamsii | |||
6 | Myristic acid (Tetradecanoic acid; N-Tetradecanoic acid) | C14H28O2 | 228.3709 | 251.09 | 150.48 | 149.08 | Rh. adamsii | |||
7 | Pentadecanoic acid (Pentadecylic acid) | C15H30O2 | 242.3975 | 243.06 | 201.01; 137.05 | 181.05; 135.04 | Rh. adamsii | |||
8 | Palmitoleic acid | C16H30O2 | 254.4082 | 277.09 | 275.04; 207.05 | 256.99 | 157.11 | Rh. adamsii | ||
9 | Cis-cyclopropan-9,10-hexadecanoic acid | C17H32O2 | 268.4348 | 269.02 | 185.97; 121.08 | 176.96 | 154.98 | Rh. adamsii | ||
10 | Linoleic acid [Linolic acid; Telfairic acid] | C18H32O2 | 280.4455 | 303.06 | 285.05; 163.00 | 180.95; 135.06 | 162.99 | Rh. adamsii | ||
11 | Stearic acid [Octadecanoic acid; Stearophanic acid] | C18H36O2 | 284.4772 | 285.07 | 284.18; 229.07; 163.02 | 180.90; 135.05 | 163.03 | Rh. adamsii; Rh. sichotense | ||
12 | Kaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4-H-chromen-4-one] | C15H10O6 | 286.2363 | 287.00 | 286.24; 204.96; 163.02 | 181.02 | 162.88 | Rh. adamsii | ||
13 | Cis-cyclopropan-9,10-octadecanoic acid | C19H32O2 | 292.4562 | 293.05 | 274.98 | 256.99; 162.98 | 201.03 | Rh. adamsii | ||
14 | Nonadecanoic acid [N-Nonadecanoic acid] | C19H38O2 | 298.5038 | 300.09 | 243.04 | 201.02 | Rh. adamsii; Rh. sichotense | |||
15 | Kaempferol 5-methyl ether | C16H12O6 | 300.2629 | 300.98 | 283.01; 177.01 | 264.98 | 200.98 | Rh. adamsii; Rh. sichotense | ||
16 | Farrerol [5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethylchroman-4-one] | C17H16O5 | 300.3059 | 301.05 | 283.04 | 241.01; 162.96 | Rh. adamsii; Rh. sichotense | |||
17 | Quercetin [2-(3,4-Dihydroxyphenyl)-3,5,7-trihy- droxy-4-H-chromen-4-one] | C15H12O7 | 302.2357 | 301.09 | 303.08 | 285.01; 163.02 | 180.97; 145.00 | 162.98 | Rh. adamsii; Rh. sichotense | |
18 | Dihydroquercetin [Taxifolin; Taxifoliol] | C15H12O7 | 304.2516 | 303.09 | 285.04 | 266.96; 241.09; 215.05; 135.05 | 171.02 | Rh. adamsii | ||
19 | Cannabigerorcinic acid [Cannabigerorcinolic acid; Cannabiorcogerolic acid] | C18H24O4 | 304.3808 | 303.08 | 285.05 | 241.07; 159.07 | 159.01 | Rh. adamsii | ||
20 | Docosane | C22H46 | 310.6006 | 311.10 | 293.06; 167.01 | 259.03 | 240.97; 162.96 | Rh. adamsii | ||
21 | 8-Demethyleucalyptin [5-Hydroxy-4′,7-dimetoxy-6-methylflavone; Pabalate; Sodium salicylate] | C18H16O5 | 312.3166 | 311.14 | 311.10; 182.99 | Rh. adamsii | ||||
22 | Arachic acid [Arachidic acid; eicosanoic acid] | C20H40O2 | 312.5304 | 311.14 | 335.04 | 303.06; 195.01 | 284.99; 238.14; 163.00 | 180.89; 135.14 | Rh. adamsii | |
23 | Azaleatin [5-O-Methylquercetin] | C16H12O7 | 316.2623 | 315.08 | 297.01; 167.04 | 235.04; 149.00 | Rh. adamsii | |||
24 | Myricetin [3,5,7-Trihydroxy-2-(3,4,5-Trihydroxyphenyl)-4H-Chromen-4-One] | C15H10O8 | 318.2351 | 317.08 | 299.01; 241.01 | 240.06; 197.09 | 238.99; 197.04 | Rh. adamsii; Rh. sichotense | ||
25 | Gossypetin [Articulatidin; Equisporol] | C15H10O8 | 318.2351 | 319.07 | 287.09; 176.98 | 146.99 | Rh. adamsii | |||
26 | Ampelopsin [Dihydromyricetin; Ampeloptin] | C15H12O8 | 320.251 | 319.08 | 317.01; 275.09 | 257.12; 217.11 | Rh. adamsii | |||
27 | Heneicosanoic acid [Heneicosylic acid] | C21H42O2 | 326.557 | 325.11 | 327.08 | 271.01; 217.03; 177.06 | 149.10 | Rh. adamsii; Rh. sichotense | ||
28 | Myricetin 5-Methyl ether [5-O-Methylmyricetin] | C16H12O8 | 332.2617 | 331.03 | 168.94 | 149.96 | Rh. sichotense | |||
29 | Esculin [Aesculin; Esculoside; Polichrome] | C15H16O9 | 340.2821 | 341.09 | 281.01; 217.11; 151.06 | 174.96 | Rh. adamsii; Rh. sichotense | |||
30 | Behenic acid [Docosanoic acid] | C22H44O2 | 340.5836 | 341.05 | 323.10; 243.11; 177.04 | 159.05 | Rh. adamsii; Rh. sichotense | |||
31 | Pentacosane (N-Pentacosane) | C25H52 | 352.6854 | 353.12 | 270.97; 162.97 | 180.93 | 162.96 | Rh. sichotense | ||
32 | Chlorogenic acid | C16H18O9 | 354.3087 | 355.09 | 287.05; 164.02 | 180.95 | 163.03 | Rh. adamsii; Rh. sichotense | ||
33 | Scopolin [Scopoloside; Scopoletin-7-glucoside; Murrayin] | C16H18O9 | 354.3087 | 355.02 | 323.00 | 303.96; 184.89 | 162.86 | Rh. adamsii; Rh. sichotense | ||
34 | Tricosanoic acid [N-Tricosanoic acid] | C23H46O2 | 354.6101 | 355.08 | 322.96; 163.00 | 180.96 | 162.96 | Rh. adamsii | ||
35 | Lignoceric acid [Tetracosanoic acid] | C24H48O2 | 368.6367 | 367.12 | 369.08 | 351.08; 285.02; 218.92; 162.98 | 163.02 | 144.97 | Rh. adamsii; Rh. sichotense | |
36 | Fraxin (Fraxetin-8-O-glucoside) | C16H18O10 | 370.3081 | 371.08 | 338.99 | 320.96; 177.03 | 224.96 | Rh. adamsii; Rh. sichotense | ||
37 | Daurichromenic acid | C23H30O4 | 370.4819 | 371.09 | 352.98; 287.08; 235.08; 179.02 | 231.04; 205.05; 162.99 | 180.93; 144.97 | Rh. adamsii; Rh. sichotense | ||
38 | Pentacosanoic acid [N-Pentacosanoic acid] | C25H50O2 | 382.6633 | 383.07 | 405.08 | 351.04; 287.99 | 229.04 | 211.03 | Rh. adamsii; Rh. sichotense | |
39 | Fraxetin-7-O-beta-glucuronide | C16H16O11 | 384.2916 | 383.09 | 365.09; 190.96 | 266.97; 215.02 | 170.97 | Rh. adamsii; Rh. sichotense | ||
40 | Beta-Sitosterin [Beta-Sitosterol] | C29H50O | 414.7067 | 415.04 | 384.02 | 369.01 | 338.00 | Rh. adamsii; Rh. sichotense | ||
41 | Cyanidin-3-alpfa-l-arabinoside | C20H19O10 | 419.3589 | 418.51 | 399.05; 319.02; 194.99 | 381.068 162.02 | 337.02; 253.08 | Rh. adamsii | ||
42 | Montanic acid [Octacosanoic acid] | C28H56O2 | 424.743 | 425.02 | 407.00 | 389.00; 348.98; 298.99; 240.97 | 333.00; 280.97; 173.02 | Rh. adamsii; Rh. sichotense | ||
43 | Alpha-Amyrin [Viminalol] | C30H50O | 426.7174 | 427.05 | 408.27; 308.99; 202.91 | 389.02; 309.01 | 373.08; 229.10; 142.80 | Rh. adamsii; Rh. sichotense | ||
44 | Lupeol [Fagarasterol; Clerodol; Monogynol B; Lupenol] | C30H50O | 426.7174 | 427.04 | 409.01; 202.99 | 389.02; 247.99 | 370.96; 264.80 | Rh. adamsii | ||
45 | Dihydroquercetin 3-arabinofuranoside | C20H16O11 | 432.3344 | 433.97 | 352.95 | 323.53; 271.96 | 241.95; 181.87 | Rh. adamsii | ||
46 | Afzelin [ Kaempferol-3-Rhamnoside; Kaempferin] | C21H20O10 | 432.3775 | 431.04 | 413.00; 372.98; 216.94 | 354.95; 167.01 | 336.98; 148.91 | Rh. sichotense | ||
47 | Quercetin-3-O-beta-xyloside (Reynoutrin; Quercetin 3-O-Beta-d-Xylopyranoside) | C20H17O11 | 433.3424 | 434.90 | 302.94 | 256.92; 164.96 | 228.91; 159.11 | Rh. sichotense | ||
48 | Avicularin (Quercetin 3-Alpha-l-Arabinofuranoside; Avicularoside) | C20H18O11 | 434.3503 | 433.09 | 415.07; 335.01; 176.98 | 397.06; 190.99 | 353.07; 253.99 | Rh. adamsii; Rh. sichotense | ||
49 | Pentoside dihydroquercetin | 436 | 435.16 | 416.54; 300.99; 231.01 | 397.02; 205.96 | 361.11; 283.02; 188.80 | Rh. adamsii; Rh. sichotense | |||
50 | Erithrodiol [3beta-Erytrodiol] | C30H50O2 | 442.7168 | 441.12 | 425.06; 381.05; 300.03; 217.04 | 363.06; 246.02 | 319.08; 201.02 | Rh. adamsii | ||
51 | Uvaol | C30H50O2 | 442.7168 | 443.22 | 425.01; 233.07 | 407.02; 325.01 | 388.99; 231.11 | Rh. adamsii; Rh. sichotense | ||
52 | Quercitrin [Quercetin 3-l-Rhamnoside; Quercetrin] | C21H20O11 | 448.3769 | 448.89 | 370.95; 282.93 | 352.95; 176.98 | 334.90; 222.92; 176.97 | Rh. adamsii | ||
53 | Catechin-7-O-glucoside | C21H24O11 | 452.4087 | 453.17 | 435.15; 336.07; 209.06 | 417.16; 336.11; 226.12 | 209.09 | Rh. sichotense | ||
54 | Micromeric acid | C30H46O3 | 454.6844 | 455.05 | 408.98; 246.98 | 391.05; 287.96 | 250.96 | Rh. adamsii | ||
55 | Hyperoside (Quercetin 3-O- galactoside; Hyperin) | C21H20O12 | 464.3763 | 465.02 | 302.91 | 256.94; 190.87 | 228.96; 172.75 | Rh. sichotense | ||
56 | Quercetin 3-O-glucoside [Isoquercitrin] | C21H20O12 | 464.3763 | 465.08 | 447.00 | 386.96 | 369.12; 172 | Rh. sichotense | ||
57 | Alpha.-Tocopherol-Beta-d-Mannoside [Dihydro-2H-Chromen-6-YI Hexofuranoside] | C35H60O7 | 592.8467 | 593.11 | 533.08 | 461.10 | 433.11 | Rh. sichotense |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razgonova, M.; Zakharenko, A.; Ercisli, S.; Grudev, V.; Golokhvast, K. Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Molecules 2020, 25, 3774. https://doi.org/10.3390/molecules25173774
Razgonova M, Zakharenko A, Ercisli S, Grudev V, Golokhvast K. Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Molecules. 2020; 25(17):3774. https://doi.org/10.3390/molecules25173774
Chicago/Turabian StyleRazgonova, Mayya, Alexander Zakharenko, Sezai Ercisli, Vasily Grudev, and Kirill Golokhvast. 2020. "Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry" Molecules 25, no. 17: 3774. https://doi.org/10.3390/molecules25173774
APA StyleRazgonova, M., Zakharenko, A., Ercisli, S., Grudev, V., & Golokhvast, K. (2020). Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Molecules, 25(17), 3774. https://doi.org/10.3390/molecules25173774