Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grimm, B.; Porra, R.J.; Rüdiger, W.; Scheer, H. Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-4516-5. [Google Scholar]
- Cao, J.; Cogdell, R.J.; Coker, D.F.; Duan, H.-G.; Hauer, J.; Kleinekathöfer, U.; Jansen, T.L.C.; Mančal, T.; Miller, R.J.D.; Ogilvie, J.P.; et al. Quantum biology revisited. Sci. Adv. 2020, 6, eaaz4888. [Google Scholar] [CrossRef] [Green Version]
- Kreisbeck, C.; Kramer, T.; Aspuru-Guzik, A. Scalable High-Performance Algorithm for the Simulation of Exciton Dynamics. Application to the Light-Harvesting Complex II in the Presence of Resonant Vibrational Modes. J. Chem. Theory Comput. 2014, 10, 4045–4054. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Augulis, R.; Novoderezhkin, V.I.; Ferretti, M.; Thieme, J.; Zigmantas, D.; van Grondelle, R. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 2014, 10, 676–682. [Google Scholar] [CrossRef]
- Fassioli, F.; Dinshaw, R.; Arpin, P.C.; Scholes, G.D. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 2014, 11, 20130901. [Google Scholar] [CrossRef] [PubMed]
- Malý, P.; Somsen, O.J.G.; Novoderezhkin, V.I.; Mančal, T.; van Grondelle, R. The Role of Resonant Vibrations in Electronic Energy Transfer. ChemPhysChem 2016, 17, 1356–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, H.-G.; Prokhorenko, V.I.; Cogdell, R.J.; Ashraf, K.; Stevens, A.L.; Thorwart, M.; Miller, R.J.D. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. Natl. Acad. Sci. 2017, 114, 8493–8498. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, S.; Kassal, I. Classification of Coherent Enhancements of Light-Harvesting Processes. J. Phys. Chem. Lett. 2020, 11, 2348–2355. [Google Scholar] [CrossRef] [Green Version]
- Zero-Phonon Lines And Spectral Hole Burning in Spectroscopy and Photochemistry; Sild, O.; Haller, K. (Eds.) Springer-Verlag: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Rätsep, M.; Freiberg, A. Resonant emission from the B870 exciton state and electron-phonon coupling in the LH2 antenna chromoprotein. Chem. Phys. Lett. 2003, 377, 371–376. [Google Scholar] [CrossRef]
- Purchase, R.; Völker, S. Spectral hole burning: examples from photosynthesis. Photosynth. Res. 2009, 101. [Google Scholar] [CrossRef] [Green Version]
- Jankowiak, R.; Reppert, M.; Zazubovich, V.; Pieper, J.; Reinot, T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron-Phonon Coupling of Selected Photosynthetic Complexes. Chem. Rev. 2011, 111, 4546–4598. [Google Scholar] [CrossRef]
- Pieper, J.; Artene, P.; Rätsep, M.; Pajusalu, M.; Freiberg, A. Evaluation of Electron-Phonon Coupling and Spectral Densities of Pigment-Protein Complexes by Line-Narrowed Optical Spectroscopy. J. Phys. Chem. B 2018, 122, 9289–9301. [Google Scholar] [CrossRef] [PubMed]
- Rätsep, M.; Linnanto, J.; Freiberg, A. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a. J. Chem. Phys. 2009, 130, 194501. [Google Scholar] [CrossRef] [PubMed]
- Reimers, J.R.; Cai, Z.-L.; Kobayashi, R.; Rätsep, M.; Freiberg, A.; Krausz, E. Assignment of the Q-Bands of the Chlorophylls: Coherence Loss via Qx−Qy Mixing. Sci. Rep. 2013, 3, 2761. [Google Scholar] [CrossRef] [Green Version]
- Rätsep, M.; Cai, Z.-L.; Reimers, J.R.; Freiberg, A. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. J. Chem. Phys. 2011, 134, 024506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rätsep, M.; Linnanto, J.M.; Muru, R.; Biczysko, M.; Reimers, J.R.; Freiberg, A. Absorption-emission symmetry breaking and the different origins of vibrational structures of the 1Qy and 1Qx electronic transitions of pheophytin a. J. Chem. Phys. 2019, 151. [Google Scholar] [CrossRef] [PubMed]
- Rebane, K.K. Impurity Spectra of Solids: Elementary Theory of Vibrational Structure; Springer US: New York, NY, USA, 1970; ISBN 978-1-4684-1778-4. [Google Scholar]
- Rebane, K.K.; Avarmaa, R.A. Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions. Chem. Phys. 1982, 68, 191–200. [Google Scholar] [CrossRef]
- Zazubovich, V.; Tibe, I.; Small, G.J. Bacteriochlorophyll a Franck-Condon Factors for the S0 → S1(Qy) Transition. J. Phys. Chem. B 2001, 105, 12410–12417. [Google Scholar] [CrossRef]
- Emerson, R.; Lewis, C.M. The Dependence of the Quantum Yield of Chlorella Photosynthesis on Wave Length of Light. Am. J. Bot. 1943, 30, 165–178. [Google Scholar] [CrossRef]
- Emerson, R.; Chalmers, R.; Cederstrand, C. Some Factors Influencing the Long-Wave Limit of Photosynthesis. Proc. Natl. Acad. Sci. USA 1957, 43, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Pettai, H.; Oja, V.; Freiberg, A.; Laisk, A. The long-wavelength limit of plant photosynthesis. FEBS Lett. 2005, 579, 4017–4019. [Google Scholar] [CrossRef] [Green Version]
- Reimers, J.R.; Biczysko, M.; Bruce, D.; Coker, D.F.; Frankcombe, T.J.; Hashimoto, H.; Hauer, J.; Jankowiak, R.; Kramer, T.; Linnanto, J.; et al. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta (BBA) Bioenerg. 2016, 1857, 1627–1640. [Google Scholar] [CrossRef] [PubMed]
- Ostroumov, E.E.; Götze, J.P.; Reus, M.; Lambrev, P.H.; Holzwarth, A.R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth Res 2020, 144, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Leiger, K.; Freiberg, A. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity. Photosynth Res. 2016, 127, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Rätsep, M.; Muru, R.; Freiberg, A. High temperature limit of photosynthetic excitons. Nat. Commun. 2018, 9, 99. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, A.; Pajusalu, M.; Rätsep, M. Excitons in Intact Cells of Photosynthetic Bacteria. J. Phys. Chem. B 2013, 117, 11007–11014. [Google Scholar] [CrossRef]
- Rätsep, M.; Pajusalu, M.; Linnanto, J.M.; Freiberg, A. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy. J. Chem. Phys. 2014, 141, 155102. [Google Scholar] [CrossRef]
- Leiger, K.; Linnanto, J.M.; Freiberg, A. Vibronic Origin of the Qy Absorption Tail of Bacteriochlorophyll a Verified by Fluorescence Excitation Spectroscopy and Quantum Chemical Simulations. J. Phys. Chem. Lett. 2017, 8, 4231–4235. [Google Scholar] [CrossRef]
- Sorgi, K.L. Triethylamine. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New York, NY, USA, 2001; ISBN 978-0-479-84289-8. [Google Scholar] [CrossRef]
- Brody, S.S.; Broyde, S.B. Low Temperature Absorption Spectra of Chlorophyll a in Polar and Nonpolar Solvents. Biophys. J. 1968, 8, 1511–1533. [Google Scholar] [CrossRef] [Green Version]
- Rätsep, M.; Linnanto, J.M.; Freiberg, A. Higher Order Vibronic Sidebands of Chlorophyll a and Bacteriochlorophyll a for Enhanced Excitation Energy Transfer and Light Harvesting. J. Phys. Chem. B 2019, 123, 7149–7156. [Google Scholar] [CrossRef]
- Sauer, K.; Smith, J.R.L.; Schultz, A.J. The Dimerization of Chlorophyll a, Chlorophyll b, and Bacteriochlorophyll in Solution. J. Am. Chem. Soc. 1966, 88, 2681–2688. [Google Scholar] [CrossRef] [Green Version]
- Shipman, L.L.; Cotton, T.M.; Norris, J.R.; Katz, J.J. An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer, and oligomers in solution. J. Am. Chem. Soc. 1976, 98, 8222–8230. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef]
- Parson, W.W.; Warshel, A. Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. J. Am. Chem. Soc. 1987, 109, 6152–6163. [Google Scholar] [CrossRef]
- Linnanto, J.; Korppi-Tommola, J. Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys. Chem. Chem. Phys. 2006, 8, 663–687. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Kobayashi, M.; Akiyama, M.; Kano, H.; Kise, H. Spectroscopy and Structure Determination. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications; Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 79–94. [Google Scholar]
- Leiger, K.; Reisberg, L.; Freiberg, A. Fluorescence Micro-Spectroscopy Study of Individual Photosynthetic Membrane Vesicles and Light-Harvesting Complexes. J. Phys. Chem. B 2013, 117, 9315–9326. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, L.; Stasiek, M.; Myśliwa-Kurdziel, B.; Strzałka, K. Phytol as one of the determinants of chlorophyll interactions in solution. Photosynth. Res. 2003, 78, 47–57. [Google Scholar] [CrossRef]
- Fiedor, L.; Kania, A.; Myśliwa-Kurdziel, B.; Orzeł, Ł.; Stochel, G. Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants. Biochim. Biophys. Acta Bioenerg. 2008, 1777, 1491–1500. [Google Scholar] [CrossRef] [Green Version]
- Palm, D.M.; Agostini, A.; Pohland, A.-C.; Werwie, M.; Jaenicke, E.; Paulsen, H. Stability of Water-Soluble Chlorophyll Protein (WSCP) Depends on Phytyl Conformation. ACS Omega 2019, 4, 7971–7979. [Google Scholar] [CrossRef] [Green Version]
- Moss, G.P. Nomenclature of tetrapyrroles. Pure Appl. Chem. 1987, 59, 779–832. [Google Scholar] [CrossRef]
- MOPAC2016. Available online: http://openmopac.net/ (accessed on 2 August 2020).
- Cherepanov, D.A.; Shelaev, I.V.; Gostev, F.E.; Mamedov, M.D.; Petrova, A.A.; Aybush, A.V.; Shuvalov, V.A.; Semenov, A.Y.; Nadtochenko, V.A. Mechanism of adiabatic primary electron transfer in photosystem I: Femtosecond spectroscopy upon excitation of reaction center in the far-red edge of the QY band. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. [Google Scholar] [CrossRef]
- John, S.; Soukoulis, C.; Cohen, M.H.; Economou, E.N. Theory of Electron Band Tails and the Urbach Optical-Absorption Edge. Phys. Rev. Lett. 1986, 57, 1777–1780. [Google Scholar] [CrossRef] [PubMed]
- Ihalainen, J.A.; Rätsep, M.; Jensen, P.E.; Scheller, H.V.; Croce, R.; Bassi, R.; Korppi-Tommola, J.E.I.; Freiberg, A. Red Spectral Forms of Chlorophylls in Green Plant PSI–A Site-Selective and High-Pressure Spectroscopy Study. J. Phys. Chem. B 2003, 107, 9086–9093. [Google Scholar] [CrossRef]
Sample Availability: No samples of the compounds are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiger, K.; Linnanto, J.M.; Freiberg, A. Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared. Molecules 2020, 25, 3796. https://doi.org/10.3390/molecules25173796
Leiger K, Linnanto JM, Freiberg A. Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared. Molecules. 2020; 25(17):3796. https://doi.org/10.3390/molecules25173796
Chicago/Turabian StyleLeiger, Kristjan, Juha Matti Linnanto, and Arvi Freiberg. 2020. "Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared" Molecules 25, no. 17: 3796. https://doi.org/10.3390/molecules25173796
APA StyleLeiger, K., Linnanto, J. M., & Freiberg, A. (2020). Establishment of the Qy Absorption Spectrum of Chlorophyll a Extending to Near-Infrared. Molecules, 25(17), 3796. https://doi.org/10.3390/molecules25173796