Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Furocoumarin Content in Plant Matrices
2.2. Selection of Extraction Parameters
2.3. Extraction Kinetics
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Extraction Procedures
3.3.1. Supercritical Fluid Extraction (SFE)
3.3.2. Soxhlet Extraction
3.3.3. Determination of Furocoumarin Solubility in Supercritical Carbon Dioxide
3.4. Quantification of Furocoumarins
3.5. Mathematical Analysis of Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Santana, L.; Uriarte, E.; Roleira, F.; Milhazes, N.; Borges, F. Furocoumarins in medicinal chemistry. Synthesis, natural occurrence and biological activity. Curr. Med. Chem. 2004, 11, 3239–3261. [Google Scholar] [CrossRef]
- Gnonlonfin, G.J.B.; Sanni, A.; Brimer, L. Review scopoletin—A coumarin phytoalexin with medicinal properties. Crit. Rev. Plant Sci. 2012, 31, 47–56. [Google Scholar] [CrossRef]
- Beier, R.C.; Oertli, E.H. Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 1983, 22, 2595–2597. [Google Scholar] [CrossRef]
- Afek, U.; Orenstein, J.; Carmeli, S.; Aharoni, N. Marmesin, a new phytoalexin associated with resistance of parsley to pathogens after harvesting. Postharvest Biol. Technol. 2002, 24, 89–92. [Google Scholar] [CrossRef]
- Bethea, D.; Fullmer, B.; Syed, S.; Selzer, G.; Tiano, J.; Rischko, C.; Gillespie, L.; Brown, D.; Gasparro, F.P. Psoralen photobiology and photochemiotherapy: 50 years of science and medicine. J. Dermatol. Sci. 1999, 19, 78–88. [Google Scholar] [CrossRef]
- Gorgus, E.; Lohr, C.; Raquet, N.; Guth, S.; Schrenk, D. Limettin and furocoumarins in beverages containing citrus juices or extracts. Food Chem. Toxicol. 2010, 48, 93–98. [Google Scholar] [CrossRef]
- Rzymski, P.; Klimaszczyk, P.; Poniedziałek, B. Invasive giant hogweeds in Poland: Risk of burns among forestry workers and plant distribution. Burns 2015, 41, 1816–1822. [Google Scholar] [CrossRef]
- Parrish, J.A.; Fitzpatrick, T.B.; Tanenbaum, L.; Pathak, M.A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med. 1974, 291, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.S.; Nichols, K.T.; Väkevä, L.H. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). The PUVA follow-up study. N. Engl. J. Med. 1997, 336, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Lindelöf, B.; Sigurgeirsson, B.; Tegner, E.; Larkö, O.; Johannesson, A.; Berne, B.; Christensen, O.B.; Andersson, T.; Törngren, M.; Molin, L.; et al. PUVA and cancer: A large-scale epidemiological study. Lancet 1991, 338, 91–93. [Google Scholar] [CrossRef]
- Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 2004, 10, 3797–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.G.; Malcolm, J.; Arnold, O.; Spence, J.D. Grapefruit juice-drug interactions. Br. J. Clin. Pharmacol. 1998, 46, 101–110. [Google Scholar] [CrossRef] [Green Version]
- De Melo, M.M.R.; Silvestre, A.J.D.; Silva, C.M. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J. Supercrit. Fluids 2014, 92, 115–176. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng. 2005, 67, 21–33. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yuan, J.; Sun, Q.; Liu, J.; Zheng, C. An efficient new method for extraction, separation and purification of psoralen and isopsoralen from Fructus Psoraleae by supercritical fluid extraction and high-speed counter-current chromatography. J. Chromatogr. A 2004, 1055, 135–140. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Zhai, Z.; Chen, W.; Fang, H.; Wu, Y. Determination of major components in Psoralea corylifolia L. by using supercritical fluid extraction (SFE). Chin. J. Chromatogr. 2000, 18, 61–63. [Google Scholar]
- Liu, H.; Zhang, M. Extraction of coumarins from Angelica dahurica by supercritical extraction and GC-MS analysis. China J. Chin. Mater. Med. 2004, 29, 241–244. [Google Scholar]
- Mi, H.; Qu, L.; Ren, Y. Study on extraction of coumarins in Cnidium monnieri by supercritical CO2 and separation of compositions analysis. China J. Chin. Mater. Med. 2005, 30, 1080–1082. [Google Scholar]
- Nykänen, I.; Nykänen, L.; Alkio, M. Composition of angelica root oils obtained by supercritical CO2 extraction and steam distillation. J. Essent. Oil Res. 1991, 3, 229–236. [Google Scholar] [CrossRef]
- Della Porta, G.; Reverchon, E.; Chouchi, D.; Barth, D. Mandarin and lime peel oil processing by supercritical CO2 desorption: Deterpenation and high molecular weight compounds elimination. J. Essent. Oil Res. 1997, 9, 512–522. [Google Scholar] [CrossRef]
- Chouchi, D.; Barth, D.; Reverchon, E.; Della Porta, G. Supercritical CO2 desorption of bergamot peel oil. Ind. Eng. Chem. Res. 1995, 34, 4508–4513. [Google Scholar] [CrossRef]
- Barth, D.; Chouchi, D.; Della Porta, G.; Reverchon, E.; Perrut, M. Desorption of lemon peel oil by supercritical carbon dioxide: Deterpenation and psoralens elimination. J. Supercrit. Fluids 1994, 7, 177–183. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Wang, Y.; Lu, J.; Chen, X. The chemical constituents and bioactivities of Psoralea corylifolia Linn.: A review. Am. J. Chin. Med. 2016, 44, 35–60. [Google Scholar] [CrossRef] [PubMed]
- Alalaiwe, A.; Hung, C.F.; Leu, Y.L.; Tahara, K.; Chen, H.H.; Hu, K.Y.; Fang, J.Y. The active compounds derived from Psoralea corylifolia for photochemotherapy against psoriasis-like lesions: The relationship between structure and percutaneous absorption. Eur. J. Pharm. Sci. 2018, 124, 114–126. [Google Scholar] [CrossRef]
- Wang, Z.C.; Feng, D.Q.; Ke, C.H. Coumarins from the herb Cnidium monnieri and chemically modified derivatives as antifoulants against Balanus albicostatus and Bugula neritina larvae. Int. J. Mol. Sci. 2013, 14, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Gao, X.; Zhu, X.; Zhang, S.; Liu, X.; Yang, H.; Song, H.; Chen, Q. Fingerprint analysis of Cnidium monnieri (L.) Cusson by high-speed counter current chromatography. Molecules 2019, 24, 4496. [Google Scholar] [CrossRef] [Green Version]
- Waksmundzka-Hajnos, M.; Petruczynik, A.; Dragan, A.; Wianowska, D.; Dawidowicz, A.L. Effect of extraction method on the yield of furocoumarins from fruits of Archangelica officinalis Hoffm. Phytochem. Anal. 2004, 15, 313–319. [Google Scholar] [CrossRef]
- Eeva, M.; Rauha, J.P.; Vuorela, P.; Vuorela, H. Computer-assisted, high-performance liquid chromatography with mass spectrometric detection for the analysis of coumarins in Peucedanum palustre and Angelica archangelica. Phytochem. Anal. 2004, 15, 167–174. [Google Scholar] [CrossRef]
- Senol, F.S.; Skalicka Woźniak, K.; Khan, M.T.H.; Orhan, I.E.; Sener, B.; Głowniak, K. An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochem. Lett. 2011, 4, 462–467. [Google Scholar] [CrossRef]
- Masuda, M.; Watanabe, S.; Tanaka, M.; Tanaka, A.; Araki, H. Screening of furanocoumarin derivatives as cytochrome P450 3A4 inhibitors in citrus. J. Clin. Pharm. Ther. 2017, 43, 15–20. [Google Scholar] [CrossRef]
- Hung, W.L.; Suk, J.H.; Wang, Y. Chemistry and health effects of furanocoumarins in grapefruit. J. Food Drug Anal. 2017, 25, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melough, M.M.; Vance, T.M.; Lee, S.G.; Provatas, A.A.; Perkins, C.; Qureshi, A.; Cho, E.; Chun, O.K. Furocoumarin kinetics in plasma and urine of healthy adults following consumption of grapefruit (Citrus paradisi Macf.) and grapefruit juice. J. Agric. Food Chem. 2017, 65, 3006–3012. [Google Scholar] [CrossRef] [PubMed]
- Chrastil, J. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 1982, 86, 3016–3021. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Szakiel, A.; Pączkowski, C.; Marszałek, K.; Skąpska, S.; Kowalska, H.; Jędrzejczak, R. Extraction of triterpenic acids and phytosterols from apple pomace with supercritical carbon dioxide: Impact of process parameters, modelling of kinetics, and scaling-up study. Molecules 2018, 23, 2790. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Shi, X.; Jiang, W. Theoretical models for supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 2–26. [Google Scholar] [CrossRef]
- Medina, I. Determination of diffusion coefficients for supercritical fluids. J. Chromatogr. A 2012, 1250, 124–140. [Google Scholar] [CrossRef]
- Span, R.; Wagner, R. A new equation of state for carbon dioxide covering the fluid region from triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509. [Google Scholar] [CrossRef] [Green Version]
- Frérot, E.; Decorzant, E. Quantification of total furocoumarins in citrus oils by HPLC coupled with UV, fluorescence, and mass detection. J. Agric. Food Chem. 2004, 52, 6879–6886. [Google Scholar] [CrossRef]
- Sovová, H. Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chem. Eng. Sci. 1994, 49, 409–414. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds and extracts are available from the authors. |
Content (mg g−1 (d.w.)) | ||||
---|---|---|---|---|
Compound | A. archangelica | C. paradisi | C. monnieri | P. corylifolia |
psoralen | nd | nd | nd | 13.22 |
isopsoralen | nd | nd | nd | 11.05 |
bergapten | 0.64 | 0.14 | nd | nd |
methoxsalen | 2.11 | nd | 4.12 | nd |
bergamottin | nd | 1.63 | nd | nd |
DHB | nd | 2.20 | nd | nd |
imperatorin | 5.85 | nd | 0.81 | nd |
osthole | 0.43 | nd | 9.43 | nd |
other | 0.92 | 0.06 | 0.22 | 2.18 |
total | 9.95 | 4.03 | 14.58 | 26.45 |
Plant | Compound | c (g L−1) | y* (-) |
---|---|---|---|
A. archangelica | imperatorin | 0.334 | 4.056 × 10−4 |
methoxsalen | 0.183 | 2.222 × 10−4 | |
bergapten | 0.168 | 2.040 × 10−4 | |
total | 0.685 | 8.318 × 10−4 | |
C. paradisi | DHB | 0.072 | 0.874 × 10−4 |
bergamottin | 0.467 | 5.665 × 10−4 | |
total | 0.539 | 6.539 × 10−4 | |
C. monnieri | osthole | 0.265 | 3.218 × 10−4 |
methoxsalen | 0.176 | 2.137 × 10−4 | |
imperatorin | 0.341 | 4.141 × 10−4 | |
total | 0.782 | 9.496 × 10−4 | |
P. corylifolia | psoralen | 0.248 | 3.011 × 10−4 |
isopsoralen | 0.233 | 2.829 × 10−4 | |
total | 0.481 | 5.840 × 10−4 |
Plant | Compound | r (-) | ks (m s−1) | kf (m s−1) |
---|---|---|---|---|
A. archangelica | imperatorin | 0.244 | 2.33 × 10−8 | 2.43 × 10−6 |
methoxsalen | 2.84 × 10−8 | 2.71 × 10−6 | ||
bergapten | 2.39 × 10−8 | 2.44 × 10−6 | ||
C. paradisi | DHB | 0.303 | 1.22 × 10−8 | 1.81 × 10−6 |
bergamottin | 1.14 × 10−8 | 1.95 × 10−6 | ||
C. monnieri | osthole | 0.307 | 2.95 × 10−8 | 2.38 × 10−6 |
methoxsalen | 2.83 × 10−8 | 2.73 × 10−6 | ||
imperatorin | 2.41 × 10−8 | 2.53 × 10−6 | ||
P. corylifolia | psoralen | 0.225 | 3.06 × 10−8 | 4.12 × 10−6 |
isopsoralen | 3.01 × 10−8 | 4.27 × 10−6 |
Parameters | Compound | y* (-) | ks (m s−1) | kf (m s−1) |
---|---|---|---|---|
60 °C, 20 MPa | psoralen | 0.794 × 10−4 | 2.88 × 10−8 | 3.95 × 10−6 |
isopsoralen | 0.742 × 10−4 | 2.91 × 10−8 | 3.92 × 10−6 | |
60 °C, 40 MPa | psoralen | 1.115 × 10−4 | 2.46 × 10−8 | 3.62 × 10−6 |
isopsoralen | 1.056 × 10−4 | 2.44 × 10−8 | 3.61 × 10−6 | |
80 °C, 20 MPa | psoralen | 1.767 × 10−4 | 3.21 × 10−8 | 4.68 × 10−6 |
isopsoralen | 1.649 × 10−4 | 3.24 × 10−8 | 4.71 × 10−6 | |
80 °C, 40 MPa | psoralen | 3.011 × 10−4 | 3.06 × 10−8 | 4.12 × 10−6 |
isopsoralen | 2.829 × 10−4 | 3.01 × 10−8 | 4.27 × 10−6 |
Scientific Name | Common Name | Material | Country of Origin | Moisture Content |
---|---|---|---|---|
Angelica archangelica L. | garden angelica | dried root | Poland | 8.2% |
Citrus × paradisi Macfad. | grapefruit | dried pomace | Italy | 8.8% |
Cnidium monnieri L. | she chuangzi | seeds | China | 5.7% |
Psoralea corylifolia L. | babchi | seeds | India | 4.7% |
Time (min) | Eluent A Water-Acetonitrile-THF 85:10:5 (vol%) | Eluent B Acetonitrile-Methanol-THF 65:30:5 (vol%) |
---|---|---|
0.0 | 100% | 0% |
7.5 | 100% | 0% |
30.0 | 68% | 32% |
36.0 | 68% | 32% |
57.0 | 45% | 55% |
60.0 | 10% | 90% |
75.0 | 10% | 90% |
90.0 | 100% | 0% |
95.0 | 100% | 0% |
Parameter | Description | Method of Determination |
---|---|---|
values selected by experimenters | ||
T (°C) | temperature of process | - |
P (MPa) | pressure of process | - |
qv (L s−1) | volumetric flow of CO2 | - |
t (s) | time of extraction | - |
ms (g) | mass of sample | - |
Vb (L) | volume of vessel | - |
characteristics of extraction bed | ||
d (m) | average diameter of particle | microscopically (Section 3.2) |
ρs (g L−1) | density of sample | pycnometer |
ρa (g L−1) | apparent density of bed | ms/Vb |
ε (-) | porosity of bed | 1-(ρa/ρs) |
a0 (m−1) | specific surface area | 6(1-ε)/d |
characteristics of supercritical fluid | ||
ρf (g L−1) | density of CO2 | calculated [16] |
qm (s−1) | relative mass flow of CO2 | (qv* ρf)/ ms |
y* (-) | solubility of analyte | experimentally (Section 3.3.3) |
characteristics of extracts | ||
x0 (-) | relative total content of analyte | HPLC of Soxhlet extracts |
x (-) | relative yield of extraction | HPLC of SFE extracts |
main kinetic parameters of extraction | ||
r (-) | fraction of less accessible solute | regressed from experimental data |
kf (m s−1) | solvent-phase mass transfer coefficient | |
ks (m s−1) | solid-phase mass transfer coefficient | |
auxiliary parameters | ||
W (-) | dimensionless parameter | Equation (6) |
Z (-) | dimensionless parameter | Equation (7) |
Zw (-) | dimensionless parameter | Equation (8) |
tCER (s) | endpoint of CER stage | Equation (9) |
tFER (s) | endpoint of FER stage | Equation (10) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, Ł.; Połaska, M.; Marszałek, K.; Skąpska, S. Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction. Molecules 2020, 25, 3805. https://doi.org/10.3390/molecules25173805
Woźniak Ł, Połaska M, Marszałek K, Skąpska S. Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction. Molecules. 2020; 25(17):3805. https://doi.org/10.3390/molecules25173805
Chicago/Turabian StyleWoźniak, Łukasz, Marzena Połaska, Krystian Marszałek, and Sylwia Skąpska. 2020. "Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction" Molecules 25, no. 17: 3805. https://doi.org/10.3390/molecules25173805
APA StyleWoźniak, Ł., Połaska, M., Marszałek, K., & Skąpska, S. (2020). Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction. Molecules, 25(17), 3805. https://doi.org/10.3390/molecules25173805