k-Oligocarrageenan Promoting Growth of Hybrid Maize: Influence of Molecular Weight
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterizations of Oligocarrageenan
2.2. Growth Characters of Crop
2.3. Yield Parameters of Grain
2.4. Nutrient Uptake
3. Materials and Methods
3.1. Degradation of Carrageenan
3.2. Characterization of Oligocarrageenans
3.3. Field Procedures
3.4. Laboratory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lau, O.S.; Deng, X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Boil. 2010, 13, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Stewart, C.N. Plant synthetic promoters and transcription factors. Curr. Opin. Biotechnol. 2016, 37, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Kennedy, J.F.; Zhang, X.; Heng, Y.; Chen, W.; Chen, Z.; Wu, X.; Wu, X. Preparation of alginate oligosaccharide and its effects on decay control and quality maintenance of harvested kiwifruit. Carbohydr. Polym. 2020, 242, 116462. [Google Scholar] [CrossRef] [PubMed]
- Digruber, T.; Sass, L.; Cseri, A.; Paul, K.; Nagy, A.V.; Remenyik, J.; Molnar, I.; Vass, I.; Toldi, O.; Gyuricza, C.; et al. Stimulation of energy willow biomass with triacontanol and seaweed extract. Ind. Crop. Prod. 2018, 120, 104–112. [Google Scholar] [CrossRef]
- Laporte, D.; Vera, J.; Chandía, N.P.; Zúñiga, E.A.; Matsuhiro, B.; Moenne, A. Structurally unrelated algal oligosaccharides differentially stimulate growth and defense against tobacco mosaic virus in tobacco plants. Environ. Boil. Fishes 2006, 19, 79–88. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Boil. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef]
- Usman, A.; Khalid, S.; Usman, A.; Hussain, Z.; Wang, Y. Algal Polysaccharides, Novel Application, and Outlook. In Algae Based Polymers, Blends, and Composites, 1st ed.; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 115–153. [Google Scholar]
- Kamińska-Dwórznicka, A.; Antczak, A.; Samborska, K.; Lenart, A. Acid hydrolysis of kappa-carrageenan as a way of gaining new substances for freezing process modification and protection from excessive recrystallisation of ice. Int. J. Food Sci. Technol. 2015, 50, 1799–1806. [Google Scholar] [CrossRef]
- Hjerde, T.; Smidsrød, O.; Stokke, B.T.; Christensen, B.E. Acid Hydrolysis of κ- and ι-Carrageenan in the Disordered and Ordered Conformations: Characterization of Partially Hydrolyzed Samples and Single-Stranded Oligomers Released from the Ordered Structures. Macromolecules 1998, 31, 1842–1851. [Google Scholar] [CrossRef]
- Singh, S.K.; Jacobsson, S.P. Kinetics of acid hydrolysis of κ-carrageenan as determined by molecular weight (SEC-MALLSRI), gel breaking strength, and viscosity measurements. Carbohydr. Polym. 1994, 23, 89–103. [Google Scholar] [CrossRef]
- Abad, L.V.; Relleve, L.S.; Racadio, C.D.T.; Aranilla, C.T.; De La Rosa, A.M. Antioxidant activity potential of gamma irradiated carrageenan. Appl. Radiat. Isot. 2013, 79, 73–79. [Google Scholar] [CrossRef]
- Castro, J.; Vera, J.; Gonzalez, A.; Moenne, A. Oligo-Carrageenans Stimulate Growth by Enhancing Photosynthesis, Basal Metabolism, and Cell Cycle in Tobacco Plants (var. Burley). J. Plant Growth Regul. 2011, 31, 173–185. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2012, 364, 145–158. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Ziosi, V.; Zandoli, R.; Vitali, F.; Nardo, A.D. Folicist, a biostimulant based on acetyl- thioproline, folic acid and plant extracts, improves seed germination and radile extension. Acta Hortic. 2013, 79–82. [Google Scholar] [CrossRef]
- Layek, J.; Das, A.; Ramkrushna, G.I.; Trivedi, K.; Yesuraj, D.; Chandramohan, M.; Kubavat, D.; Agarwal, P.K.; Ghosh, A. Seaweed sap: A sustainable way to improve productivity of maize in North-East India. Int. J. Environ. Stud. 2015, 72, 305–315. [Google Scholar] [CrossRef]
- Sun, T.; Tao, H.; Xie, J.; Zhang, S.; Xu, X. Degradation and antioxidant activity of κ-carrageenans. J. Appl. Polym. Sci. 2010, 117, 194–199. [Google Scholar] [CrossRef]
- Hjerde, T.; Stokke, B.T.; Smidsrød, O.; Christensen, B.E. Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions. Carbohydr. Polym. 1998, 37, 41–48. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, B.; Wu, Y.; Liu, Y.; Gu, X.; Zhang, H.; Wang, C.; Cao, H.; Huang, L.; Wang, Z. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015, 178, 311–318. [Google Scholar] [CrossRef]
- Pereira, L.; Van De Velde, F. Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym. 2011, 84, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Carrageenans from Red Seaweeds As Promoters of Growth and Elicitors of Defense Response in Plants. Front. Mar. Sci. 2016, 3, 81. [Google Scholar] [CrossRef]
- Saucedo, S.; Contreras, R.A.; Moenne, A. Oligo-carrageenan kappa increases C, N and S assimilation, auxin and gibberellin contents, and growth in Pinus radiata trees. J. For. Res. 2015, 26, 635–640. [Google Scholar] [CrossRef]
- González, A.; Contreras, R.A.; Moenne, A. Oligo-Carrageenans Enhance Growth and Contents of Cellulose, Essential Oils and Polyphenolic Compounds in Eucalyptus globulus Trees. Molecules 2013, 18, 8740–8751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, W.; Prithiviraj, B.; Smith, D. Effect of Foliar Application of Chitin and Chitosan Oligosaccharides on Photosynthesis of Maize and Soybean. Photosynthetica 2002, 40, 621–624. [Google Scholar] [CrossRef]
- Abad, L.V.; Aurigue, F.B.; Relleve, L.S.; Montefalcon, D.R.V.; Lopez, G.E.P. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter. Radiat. Phys. Chem. 2016, 118, 75–80. [Google Scholar] [CrossRef]
- Nge, K.L.; Nwe, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 2006, 170, 1185–1190. [Google Scholar] [CrossRef]
- Dzung, P.D.; Van Phu, D.; Du, B.D.; Ngoc, L.S.; Duy, N.N.; Hiet, H.D.; Nghia, D.H.; Thang, N.T.; Van Le, B.; Hien, N.Q. Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant. Plant Prod. Sci. 2017, 20, 389–395. [Google Scholar] [CrossRef]
- González, A.; Gutierrez-Cutiño, M.; Moenne, A. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees. Molecules 2014, 19, 7356–7367. [Google Scholar] [CrossRef] [Green Version]
- Umhaw, G.P.; Naval, R.C.; Dolojan, F.M.; Abella, M.E.S.; Hizon, M.G.S.; Mabborang, S.A. Effects of radiation-modified kappa-carrageenan supplementation in corn (Zea mays L.). J. Crit. Rev. 2020, 7, 6–8. [Google Scholar] [CrossRef]
- Bi, F.; Iqbal, S.; Arman, M.; Ali, A.; Mahmood, Q. Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc. 2011, 15, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, G.; Liu, L.; Zhao, K.; Wu, L.; Hu, C.; Di, H. The role of calcium in regulating alginate-derived oligosaccharides in nitrogen metabolism of Brassica campestris L. var. utilis Tsen et Lee. Plant Growth Regul. 2011, 64, 193–202. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Eckol Improves Growth, Enzyme Activities, and Secondary Metabolite Content in Maize (Zea mays cv. Border King). J. Plant Growth Regul. 2015, 34, 410–416. [Google Scholar] [CrossRef]
- Carroll, M.J.; Slaughter, L.H.; Krouse, J.M. Turgor Potential and Osmotic Constituents of Kentucky Bluegrass Leaves Supplied with Four Levels of Potassium. Agron. J. 1907, 86, 1079–1083. [Google Scholar] [CrossRef]
- Ning, P.; Liao, C.; Li, S.; Yu, P.; Zhang, Y.; Li, X.; Li, C. Maize cob plus husks mimics the grain sink to stimulate nutrient uptake by roots. Field Crop. Res. 2012, 130, 38–45. [Google Scholar] [CrossRef]
Sample Availability: Samples of the oligocarrageenan are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
San, P.T.; Khanh, C.M.; Khanh, H.H.N.; Khoa, T.A.; Hoang, N.; Nhung, L.T.; Trinh, N.T.K.; Nguyen, T.-D. k-Oligocarrageenan Promoting Growth of Hybrid Maize: Influence of Molecular Weight. Molecules 2020, 25, 3825. https://doi.org/10.3390/molecules25173825
San PT, Khanh CM, Khanh HHN, Khoa TA, Hoang N, Nhung LT, Trinh NTK, Nguyen T-D. k-Oligocarrageenan Promoting Growth of Hybrid Maize: Influence of Molecular Weight. Molecules. 2020; 25(17):3825. https://doi.org/10.3390/molecules25173825
Chicago/Turabian StyleSan, Pham Trung, Chau Minh Khanh, Huynh Hoang Nhu Khanh, Truong Anh Khoa, Nguyen Hoang, Le Thi Nhung, Nguyen Thi Kieu Trinh, and Thanh-Danh Nguyen. 2020. "k-Oligocarrageenan Promoting Growth of Hybrid Maize: Influence of Molecular Weight" Molecules 25, no. 17: 3825. https://doi.org/10.3390/molecules25173825
APA StyleSan, P. T., Khanh, C. M., Khanh, H. H. N., Khoa, T. A., Hoang, N., Nhung, L. T., Trinh, N. T. K., & Nguyen, T. -D. (2020). k-Oligocarrageenan Promoting Growth of Hybrid Maize: Influence of Molecular Weight. Molecules, 25(17), 3825. https://doi.org/10.3390/molecules25173825