Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials
Abstract
:1. Introduction
2. Characteristics of Supercritical Fluids as a Novel Extraction Technique
2.1. Background of Supercritical Fluid Extraction
2.2. Concept of Supercritical Fluids Extraction and Principles
2.3. Properties of Supercritical Fluids
3. Operational Use of Carbon Dioxide in Bioactive Compound Extraction
4. Parameters to Consider and Their Effect during Supercritical Fluid Extraction
4.1. Effects of Temperature and Pressure
4.2. Effects of Co-Solvent/Modifier
4.3. Effect of the Raw Matrix on Supercritical Fluid Extraction
4.4. Influence of Extraction Time
5. SFE in Plant Bioactive Compounds Extraction
5.1. Alkaloids
5.2. Terpenes or Terpenoids
5.3. Phenolic Compounds
6. Current Applications of Supercritical Fluid Extraction
6.1. Application of SC-CO2 in Food Industry
6.2. Application of SC-CO2 in the Pharmaceuticals Industry
6.3. Application of SC-CO2 in the Cosmetics Industry
7. Conclusions
Funding
Conflicts of Interest
References
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Tsiaka, T.; Sinanoglou, V.J.; Zoumpoulakis, P. Extracting Bioactive Compounds From Natural Sources Using Green High-Energy Approaches: Trends and Opportunities in Lab- and Large-Scale Applications. In Ingredients Extraction by Physicochemical Methods in Food; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: New York, NY, USA, 2017; Volume 4, pp. 307–365. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ortega, A.M.; Segura- Campos, M.R. Bioactive Compounds as Therapeutic Alternatives. In Bioactive Compounds Health Benefits and Potential Applications, 1st ed.; Campos, M.R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–264. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Lin, G.L.; Ye, C.W. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Ghasemi, E.; Raofie, F.; Najafi, N.M. Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem. 2011, 126, 1449–1453. [Google Scholar] [CrossRef]
- Kate, A.E.; Singh, A.; Shahi, N.C.; Pandey, J.P.; Prakash, O.M.; Singh, T.P. Novel Eco-Friendly Techniques for Extraction of Food Based Lipophilic Compounds from Biological Materials. Nat. Prod. Chem. Res. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert-Vian, M.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Wrona, O.; Rafińska, K.; Możeńiska, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Branch, J.A.; Bartlett, P.N. Electrochemistry in supercritical fluids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Camargo, A.P.; Mendiola, A.J.; Ibáñez, E.; Herrero, M. Supercritical Fluid Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Waltham, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Kulazynski, M.; Stolarski, M.; Fałtynowicz, H.; Narowska, B.; Swiatek, L.; Łukaszewicz, M. Supercritical fluid extraction of vegetable materials. Chem. Chem. Technol. 2016, 10, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Raventós, M.; Duarte, S.; Alarcón, R. Application and Possibilities of Supercritical CO2 Extraction in Food Processing Industry: An Overview. Food Sci. Technol. Int. 2002, 8, 269–284. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, A.A.M. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Schuster, J.J.; Bahr, L.A.; Fehr, L.; Tippelt, M.; Schulmeyr, J.; Wuzik, A.; Braeuer, A.S. Online monitoring of the supercritical CO2 extraction of hop. J. Supercrit. Fluids 2018, 133, 139–145. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng. 2005, 67, 21–33. [Google Scholar] [CrossRef]
- Clifford, A.; Williams, J.R. Introduction to Supercritical Fluids and Their Applications. In Supercritical Fluid Methods and Protocols. Methods in Biotechnology; Humana Press: Totowa, NJ, USA, 2000; Volume 13, pp. 1–16. [Google Scholar]
- Santos, D.T.; Meireles, M.A.A. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: Processes description, state of the art and perspectives. Food Sci. Technol. 2015, 35, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Machmudah, S.; Kitada, K.; Sasaki, M.; Goto, M.; Munemasa, J.; Yamagata, M. Simultaneous Extraction and Separation Process for Coffee Beans with Supercritical CO2 and Water. Ind. Eng. Chem. Res. 2011, 50, 2227–2235. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, R.P.F.F.; Rocha-Santos, A.P.T.; Duarte, C.A. Supercritical fluid extraction of bioactive compounds. Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Reverchon, E.; De Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Bubalo, C.M.; Vidović, S.; Redovniković, I.R.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Budisa, N.; Schulze-Makuch, D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment Communication. Life 2014, 4, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S.; Bhatbhage, P.K. Supercritical fluid extraction review. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Brazhkin, V.V.; Lyapin, A.G.; Ryzhov, V.N.; Trachenko, K.; Fomin, D.Y.; Tsiok, E.N. Where is the supercritical fluid on the phase diagram? Phys. Usp. 2012, 55, 1061–1079. [Google Scholar] [CrossRef] [Green Version]
- Gopaliya, P.; Kamble, R.P.; Kamble, R.; Chauhan, S.C. A review article on supercritical fluid chromatography. Int. J. Chem. Pharm. Rev. Res. 2014, 3, 59–66. [Google Scholar]
- Raja, M.V.P.; Barron, R.A. Basic Principles of Supercritical Fluid Chromatography and Supercritical Fluid Extraction. Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Book%3A_Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/03%3A_Principles_of_Gas_Chromatography/3.03%3A_Basic_Principles_of_Supercritical_Fluid_Chromatography_and_Supercrtical_Fluid_Extraction (accessed on 16 January 2020).
- Goyeneche, R.; Fanovich, A.; Rodrigues, C.; Nicolao, M.C.; Di Scala, K. Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity. J. Supercrit. Fluids 2018, 135, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Masoodi, F.A.; Rather, A.S.; Wani, S.M.; Gull, A. Supercritical Fluid Extraction: A review. J. Biol. Chem. Chron. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Abbas, K.A.; Mohamed, A.; Abdulamir, A.S.; Abas, H.A. A Review on Supercritical Fluid Extraction as New Analytical Method. Am. J. Biochem. Biotechnol. 2008, 4, 345–353. [Google Scholar] [CrossRef]
- Khaw, K.Y.; Parat, O.M.; Shaw, N.P.; Falconer, R.J. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Sodeifiana, G.; Sajadiana, A.S.; Honarvarc, B. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide. Nat. Prod. Res. 2017, 32, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.R.; Yian, L.N.; Nasir, H.M.; Idham, Z.B.; Yunus, M.A.C. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Pardo, A.F.; Nakajima, M.V.; Macedo, A.G.; Macedo, A.J.; Martínez, J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and co-solvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Pourmortazavi, M.S.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. J. Supercrit. Fluids 2019, 151, 30–39. [Google Scholar] [CrossRef]
- Mazzutti, S.; Ferreira, S.R.S.; Riehl, C.A.S.; Smania, A.; Smania, F.A.; Martinez, J. Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. J. Supercrit. Fluids 2012, 70, 48–56. [Google Scholar] [CrossRef]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Hamid, A.; Zaidul, I.S.M. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Marszałek, K.; Skąpska, S.; Jędrzejczak, R. The Application of Supercritical Carbon Dioxide and Ethanol for the Extraction of Phenolic Compounds from Chokeberry Pomace. Appl. Sci. 2017, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Akay, S.; Alpak, I.; Yesil-Celiktas, O. Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study. J. Sep. Sci. 2011, 34, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yi, C.; Ye, X.; Xue, S.; Jiang, Y.; Liu, D. Effects of supercritical CO2 fluid parameters on chemical composition and yield of carotenoids extracted from pumpkin. LWT Food Sci. Technol. 2010, 43, 39–44. [Google Scholar] [CrossRef]
- Rodrigues, V.M.; Rosa, P.T.V.; Marques, M.O.M.; Petenate, A.J.; Meireles, M.A.A. Supercritical Extraction of essential oil from Aniseed (Pimpinella anisum L.) using CO2: Solubility, kinetics, and composition data. J. Agric. Food Chem. 2003, 51, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Baldino, L.; Reverchon, E. Challenges in the production of pharmaceutical and food related compounds by SC-CO2 processing of vegetable matter. J. Supercrit. Fluids 2018, 134, 269–273. [Google Scholar] [CrossRef]
- Wang, L.; Weller, L.C. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Uquiche, E.; Campos, C.; Marillán, C. Assessment of the bioactive capacity of extracts from Leptocarpha rivularis stalks using ethanol-modified supercritical CO2. J. Supercrit. Fluids 2019, 147, 1–8. [Google Scholar] [CrossRef]
- Sato, T.; Ikeya, Y.; Adachi, S.; Yagasaki, K.; Nihei, K.; Itoh, N. Extraction of strawberry leaves with supercritical carbon dioxide and entrainers: Antioxidant capacity, total phenolic content, and inhibitory effect on uric acid production of the extract. Food Bioprod. Process. 2019, 117, 160–169. [Google Scholar] [CrossRef]
- Klein, E.J.; Náthia-Neves, G.; Vardanega, R.; Meireles, M.A.A.; Antônio da Silva, E.; Vieira, M.G.A. Supercritical CO2 extraction of α-/β -amyrin from uvaia (Eugenia pyriformis Cambess): Effects of pressure and co-solvent addition. J. Supercrit. Fluids 2019, 153, 1–6. [Google Scholar] [CrossRef]
- Del Valle, J.M.; Uquiche, E.L. Particle size effects on supercritical CO2 extraction of oil-containing seeds. J. Am. Oil Chem. Soc. 2002, 79, 1261–1266. [Google Scholar] [CrossRef]
- Aris, N.A.; Zaini, A.S.; Nasir, H.M.; Idham, Z.; Vellasamy, Y.; Yunus, M.A.C. Effect of particle size and co-extractant in Momordica charantia extract yield and diffusion coefficient using supercritical CO2. Mal. J. Fund. Appl. Sci. 2018, 14, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Thirumurugan, D.; Cholarajan, A.; Raja, S.S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. Available online: https://www.intechopen.com/books/secondary-metabolites-sources-and-applications/an-introductory-chapter-secondary-metabolites (accessed on 10 December 2019).
- Facchini, P.J. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 29–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellington, E.; Bastida, J.; Viladomat, F.; Codina, C. Supercritical carbon dioxide extraction of colchicine and related alkaloids from seeds of Colchicum autumnale L. Phytochem. Anal. 2003, 14, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Carrera, S.; Tramontin, D.P.; Cruz, A.B.; Cruz, R.C.B.; Müller, J.M.; Hense, H. Biological activity of extracts from guayusa leaves (Ilex guayusa Loes.) obtained by supercritical CO2 and ethanol as cosolvent. J. Supercrit. Fluids 2019, 152, 1–9. [Google Scholar] [CrossRef]
- Grijó, D.; Bidoia, D.L.; Nakamura, C.V.; Osorio, I.V.; Cardozo-Filho, L. Analysis of the antitumor activity of bioactive compounds of Cannabis flowers extracted by green solvents. J. Supercrit. Fluids 2019, 149, 20–25. [Google Scholar] [CrossRef]
- Ruan, X.; Cui, W.X.; Yang, L.; Li, Z.H.; Liu, B.; Wang, Q. Extraction of total alkaloids, peimine and peiminine from the flower of Fritillaria thunbergii Miq using supercritical carbon dioxide. J. CO2 Util. 2017, 18, 283–293. [Google Scholar] [CrossRef]
- Park, H.S.; Choi, H.K.; Lee, S.J.; Park, K.W.; Choi, S.G.; Kim, K.H. Effect of mass transfer on the removal of caffeine from green tea by supercritical carbon dioxide. J. Supercrit. Fluids 2007, 42, 205–211. [Google Scholar] [CrossRef]
- Tiwari, S. Plants: A rich source of herbal medicine. J. Nat. Prod. 2008, 1, 27–35. [Google Scholar]
- Vardanega, R.; Nogueira, G.C.; Nascimento, C.D.O.; Faria-Machado, A.F.; Meireles, M.A.A. Selective extraction of bioactive compounds from annatto seeds by sequential supercritical CO2 process. J. Supercrit. Fluids 2019, 150, 122–127. [Google Scholar] [CrossRef]
- Martinez-Correa, H.A.; Paula, J.T.; Kayano, A.C.A.V.; Queiroga, C.L.; Magalhães, P.M.; Costa, F.T.M.; Cabral, F.A. Composition and antimalarial activity of extracts of Curcuma longa L. obtained by a combination of extraction processes using supercritical CO2, ethanol and water as solvents. J. Supercrit. Fluids 2017, 119, 122–129. [Google Scholar] [CrossRef]
- Petrović, N.V.; Petrović, S.S.; Džamić, A.M.; Ćirić, A.D.; Ristic, M.S.; Milovanović, S.L.; Petrović, S.D. Chemical composition, antioxidant and antimicrobial activity of Thymus praecox supercritical extracts. J. Supercrit. Fluids 2016, 110, 117–125. [Google Scholar] [CrossRef]
- Koroch, A.R.; Simon, J.E.; Juliani, H.R. Essential oil composition of purple basils, their reverted green varieties (Ocimum basilicum) and their associated biological activity. Ind. Crops Prod. 2017, 107, 526–530. [Google Scholar] [CrossRef]
- Elgndi, M.A.; Filip, S.; Pavlić, B.; Vladić, J.; Stanojković, T.; Žižak, Ž.; Zeković, Z. Antioxidative and cytotoxic activity of essential oils and extracts of Satureja montana L., Coriandrum sativum L. and Ocimum basilicum L. obtained by supercritical fluid extraction. J. Supercrit. Fluids 2017, 128, 128–137. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; Lopez de la Hazas, M.C.; Vicente, G.; Reglero, G.; Santoyo, S. Supercritical sage extracts as anti-inflammatory food ingredients. Ind. Crops Prod. 2014, 54, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical carbon dioxide hops extracts with antimicrobial properties. Open Chem. 2015, 13, 1157–1171. [Google Scholar] [CrossRef]
- Baldino, L.; Reverchon, E.; Della Porta, G. An optimized process for SC-CO2 extraction of antimalarial compounds from Artemisia annua L. J. Supercrit. Fluids 2017, 128, 89–93. [Google Scholar] [CrossRef]
- Chung, H.H.; Sung, Y.C.; Shyur, L.F. Deciphering the Biosynthetic Pathways of Bioactive Compounds in Planta Using Omics Approaches. In Medicinal Plants—Recent Advances in Research and Development; Tsay, H.S., Shyur, L.F., Agrawal, D., Wu, Y.C., Wang, S.Y., Eds.; Springer: Singapore, 2016; pp. 129–165. [Google Scholar] [CrossRef]
- Pino, O.; Sánchez, Y.H.; Rojas, M.M. Plant secondary metabolites as an alternative in pest management: Background, research approaches and trends. Rev. Protección Veg. 2013, 28, 81–94. [Google Scholar]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
- Carrara, V.S.; Filho, L.C.; Garcia, V.A.S.; Faiões, V.S.; Cunha-Júnior, E.F.; Torres-Santos, E.C.; Cortez, D.A.G. Supercritical Fluid Extraction of Pyrrolidine Alkaloid from Leaves of Piper amalago L. Evid. Based Complement. Altern. Med. 2017, 2017, 1–6. [Google Scholar] [CrossRef]
- Içen, H.; Gürü, M. Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes. J. Supercrit. Fluids 2010, 55, 156–160. [Google Scholar] [CrossRef]
- De Azevedo, A.B.A.; Mazzafera, P.; Mohamed, R.S.; Vieira de Melo, S.A.B.V.; Kieckbusch, T.G. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Braz. J. Chem. Eng. 2008, 25, 543–552. [Google Scholar] [CrossRef]
- Falcão, M.A.; Scopel, R.; Almeida, R.N.; Espirito Santo, A.T.; Franceschini, G.; Garcez, J.J.; Vargas, R.M.F.; Cassel, E. Supercritical fluid extraction of vinblastine from Catharanthus roseus. J. Supercrit. Fluids 2017, 129, 9–15. [Google Scholar] [CrossRef]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes. In Biochemistry of Plant Secondary Metabolism, 2nd ed.; Wink, M., Ed.; Wiley: New York, NY, USA, 2010; Volume 40, pp. 258–303. [Google Scholar]
- Berger, R.G. Flavours and Fragrances Chemistry, Bioprocessing and Sustainability; Springer: Heidelberg, Germany, 2007; Volume XVI, pp. 43–103. [Google Scholar]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Guerrero-Beltrán, J.Á. Supercritical extraction of essential oils of Piper auritum and Porophyllum ruderale. J. Supercrit. Fluids 2017, 127, 97–102. [Google Scholar] [CrossRef]
- Shahsavarpour, M.; Lashkarbolooki, M.; Eftekhari, M.J.; Esmaeilzadeh, F. Extraction of essential oils from Mentha spicata L. (Labiatae) via optimized supercritical carbon dioxide process. J. Supercrit. Fluids 2017, 130, 253–260. [Google Scholar] [CrossRef]
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. Extraction of vetiver essential oil by ethanol-modified supercritical carbon dioxide. Chem. Eng. 2010, 165, 26–34. [Google Scholar] [CrossRef]
- Frohlicha, P.C.; Santosa, K.A.; Palúa, F.; Cardozo-Filho, L.; Da Silva, C.; Da Silva, E.A. Evaluation of the effects of temperature and pressure on the extraction of eugenol from clove (Syzygium aromaticum) leaves using supercritical CO2. J. Supercrit. Fluids 2019, 143, 313–320. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.Á. CO2 -supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Mejri, J.; Bouajila, J.; Aydi, A.; Barth, D.; Abderrabba, M.; Mejri, M. Supercritical CO2 Extract and Essential Oil of Ruta chalepensis L. Growing in Tunisia: A Natural Source of Undecan-2-one. Anal. Chem. Lett. 2012, 2, 290–300. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A. Investigation of essential oil extraction and antioxidant activity of Echinophora platyloba DC. using supercritical carbon dioxide. J. Supercrit. Fluids 2017, 121, 52–62. [Google Scholar] [CrossRef]
- Pavlić, B.; Pezo, L.; Marić, B.; Tukuljac, L.P.; Zeković, Z.; Solarov, M.B.; Teslić, N. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling. J. Supercrit. Fluids 2020, 157, 1–42. [Google Scholar] [CrossRef]
- Montañés, F.; Catchpole, O.J.; Tallon, S.; Mitchell, K.A.; Scott, D.; Webby, R.F. Extraction of apple seed oil by supercritical carbon dioxide at pressures up to 1300 bar. J. Supercrit. Fluids 2018, 141, 128–136. [Google Scholar] [CrossRef]
- Lima, M.A.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 2018, 133, 94–102. [Google Scholar] [CrossRef]
- Lima, M.A.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Camargo, A.P.; Gutiérrez, L.F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 1–9. [Google Scholar] [CrossRef]
- Lima, R.N.; Ribeiro, A.S.; Ilho, C.L.; Vedoy, D.; Alves, P.B. Extraction from Leaves of Piper klotzschianum using Supercritical Carbon Dioxide and Co-Solvents. J. Supercrit. Fluids 2019, 147, 205–212. [Google Scholar] [CrossRef]
- Bitencourt, R.G.; Ferreira, N.J.; De Oliveira, A.L.; Cabral, F.A.; Meirelles, A.J.A. High pressure phase equilibrium of the crude green coffee oil—CO2-ethanol system and the oil bioactive compounds. J. Supercrit. Fluids 2018, 133, 49–57. [Google Scholar] [CrossRef]
- Favareto, R.; Teixeira, M.B.; Soares, F.A.L.; Belisário, C.M.; Corazza, M.L.; Cardozo-Filho, L. Study of the supercritical extraction of Pterodon fruits (Fabaceae). J. Supercrit. Fluids 2017, 128, 159–165. [Google Scholar] [CrossRef]
- Jokić, S.; Molnara, M.; Jakovljević, M.; Aladić, K.; Jerković, I. Optimization of supercritical CO2 extraction of Salvia officinalis L. leaves targeted on Oxygenated monoterpenes, α-humulene, viridiflorol and manool. J. Supercrit. Fluids 2018, 133, 253–262. [Google Scholar] [CrossRef]
- Machmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Durante, M.; Lenucci, S.M.; Mita, G. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review. Int. J. Mol. Sci. 2014, 15, 6725–6740. [Google Scholar] [CrossRef] [Green Version]
- Global Carotenoid Market—Growth, Trends, and Forecast (2018–2023). Available online: https://www.researchandmarkets.com/research/hhcphc/global_carotenoid?w=4 (accessed on 12 January 2020).
- Soto-Armenta, L.C.; Sacramento-Rivero, J.C.S.; Ruiz-Mercado, C.A.; Lope-Navarrete, M.C.; Rocha-Uribe, J.A. Extraction yield and kinetic study of Lippia graveolens with supercritical CO2. J. Supercrit. Fluids 2018, 145, 205–210. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattanzio, V.; Kroon, P.A.; Quideau, S.; Treutter, D. Plant Phenolics–Secondary Metabolites with Diverse Functions. In Recent Advances in Polyphenol Research, 1st ed.; Daayf, F., Lattanzio, V., Eds.; Wiley: New York, NY, USA, 2008; Volume 1, pp. 1–35. [Google Scholar]
- Liza, S.M.; Rahman, R.A.; Mandan, B.; Jinap, S.; Rahmat, A.; Zaidul, I.S.M.; Hamid, A. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food Bioprod. Process. 2010, 88, 319–326. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Ouédraogo, J.C.W.; Dicko, C.; Kini, F.B.; Bonzi-Coulibaly, Y.L.; Dey, E.S. Enhanced extraction of flavonoids from Odontonema strictum leaves with antioxidant activity using supercritical carbon dioxide fluid combined with ethanol. J. Supercrit. Fluids 2018, 131, 66–71. [Google Scholar] [CrossRef]
- Pieczykolan, A.; Pietrzak, W.; Rój, E.; Nowak, R. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the content of tiliroside in the extracts from Tilia L. flowers. De Gruyter 2019, 17, 302–312. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Suidou, Y.; Suetsugu, T.; Takamizu, A.; Tanaka, M.; Hoshino, M.; Diono, W.; Kanda, H.; Goto, M. Functional ingredients extraction from citrus genkou by supercritical carbon dioxide. Asian J. Appl. Sci. 2016, 4, 833–838. [Google Scholar]
- Cruz, P.N.; Fetzer, D.L.; Amaral, W.; Andrade, E.F.; Corazza, M.L.; Masson, M.L. Antioxidant activity and fatty acid profile of yacon leaves extracts obtained by supercritical CO2 + ethanol solvent. J. Supercrit. Fluids 2019, 146, 55–64. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2018, 147, 213–221. [Google Scholar] [CrossRef]
- Benito-Román, O.; Rodríguez-Perrino, M.; Sanz, M.T.; Melgosa, R.; Beltrán, S. Supercritical carbon dioxide extraction of quinoa oil: Study of the influence of process parameters on the extraction yield and oil quality. J. Supercrit. Fluids 2018, 139, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Valadez-Carmona, L.; Ortiz-Moreno, A.; Ceballos-Reyes, G.; Mendiola, J.A.; Ibáñez, E. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluids 2018, 131, 99–105. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Cabred, S.; Ramirez, C.L.; Fanovich, M.A. Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. J. Supercrit. Fluids 2018, 143, 90–96. [Google Scholar] [CrossRef]
- Guindani, C.; Podestá, R.; Block, J.M.; Rossi, M.J.; Mezzomo, N.; Ferreira, S.R.S. Valorization of chia (Salvia hispanica) seed cake by means of supercritical fluid extraction. J. Supercrit. Fluids 2016, 112, 67–75. [Google Scholar] [CrossRef]
- Spinelli, S.; Conte, A.; Lecce, L.; Padalino, L.; Del Nobile, M.A. Supercritical carbon dioxide extraction of brewer’s spent grain. J. Supercrit. Fluids 2016, 107, 69–74. [Google Scholar] [CrossRef]
- Boselli, E.; Caboni, M.F. Supercritical carbon dioxide extraction of phospholipids from dried egg yolk without organic modifier. J. Supercrit. Fluids 2000, 19, 45–50. [Google Scholar] [CrossRef]
- Vedaraman, N.; Srinivasakannan, C.; Brunner, G.; Ramabrahmam, B.V.; Rao, P.G. Experimental and modeling studies on extraction of cholesterol from cow brain using supercritical carbon dioxide. J. Supercrit. Fluids 2005, 34, 27–34. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, J.D.; Kim, J.; Oh, S.G.; Lee, Y.W. Selective caffeine removal from green tea using supercritical carbon dioxide extraction. J. Food Eng. 2008, 89, 303–309. [Google Scholar] [CrossRef]
- Bermejo, D.V.; Ibáñez, E.; Reglero, G.; Fornari, T. Effect of co-solvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. J. Supercrit. Fluids 2016, 107, 507–512. [Google Scholar] [CrossRef]
- Kupski, S.C.; Klein, E.J.; Antônio da Silva, E.; Palú, F.; Guirardello, R.; Vieira, M.G.A. Mathematical modeling of supercritical CO2 extraction of hops (Humulus lupulus L.). J. Supercrit. Fluids 2017, 130, 347–356. [Google Scholar] [CrossRef]
- Hoshino, Y.; Ota, M.; Sato, Y.; Smith, R.L.; Inomata, H. Fractionation of hops-extract–ethanol solutions using dense CO2 with a counter-current extraction column. J. Supercrit. Fluids 2018, 136, 37–43. [Google Scholar] [CrossRef]
- Varaee, M.; Honarvar, M.; Eikani, M.H.; Omidkhah, M.R.; Moraki, N. Supercritical fluid extraction of free amino acids from sugar beet and sugar cane molasses. J. Supercrit. Fluids 2019, 144, 48–55. [Google Scholar] [CrossRef]
- Fiori, L.; Manfrini, M.; Castello, D. Supercritical CO2 fractionation of omega-3 lipids from fish by-products: Plant and process design, modeling, economic feasibility. Food Bioprod. Process. 2014, 92, 120–132. [Google Scholar] [CrossRef]
- Erkucuk, A.; Akgun, I.H.; Yesil-Celiktas, O. Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: Identification and optimization. J. Supercrit. Fluids 2009, 51, 29–35. [Google Scholar] [CrossRef]
- Basegmez, H.I.O.; Povilaitis, D.; Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Alasalvar, C.; Venskutonis, P.R. Biorefining of blackcurrant pomace into high value functional ingredients using supercritical CO2, pressurized liquid and enzyme assisted extractions. J. Supercrit. Fluids 2017, 124, 10–19. [Google Scholar] [CrossRef]
- Karimi, M.; Raofie, F. Micronization of vincristine extracted from Catharanthus roseus by expansion of supercritical fluid solution. J. Supercrit. Fluids 2019, 146, 172–179. [Google Scholar] [CrossRef]
- Adeoye, O.; Costa, C.; Casimiro, T.; Aguiar-Ricardo, A.; Cabral-Marques, H. Preparation of ibuprofen/hydroxypropyl-γ-cyclodextrin inclusion complexes using supercritical CO2-assisted spray drying. J. Supercrit. Fluids 2018, 133, 479–485. [Google Scholar] [CrossRef]
- Brandão, G.H.A.; Rigo, G.; Roque, A.A.; Souza, A.C.D.; Scopel, M.; Nascimento, O.C.A.; Tasca, T.; Pereira, C.G.; Giordani, R.B. Extraction of bioactive alkaloids from Melocactus zehntneri using supercritical fluid. J. Supercrit. Fluids 2017, 129, 28–35. [Google Scholar] [CrossRef]
- Yang, T.J.; Tsai, F.J.; Chen, C.Y.; Yang, T.C.C.; Lee, M.R. Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. Anal. Chim. Acta 2010, 668, 188–194. [Google Scholar] [CrossRef]
- Lee, M.R.; Lin, C.Y.; Li, Z.G.; Tsai, T.F. Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography–mass spectrometry. J. Chromatogr. A 2006, 1120, 244–251. [Google Scholar] [CrossRef]
- Vogt, O.; Sikora, E.; Ogonowski, J. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels. Pol. J. Chem. Technol. 2014, 16, 51–54. [Google Scholar] [CrossRef] [Green Version]
Solvent | Molecular Weight | Critical Temperature | Critical Pressure | Critical Density |
---|---|---|---|---|
[g/mol] | [K] | [MPa] | [g/cm3] | |
Carbon dioxide | 44.01 | 304.1 | 7.38 | 0.469 |
Water | 18.02 | 647.3 | 22.12 | 0.348 |
Methane | 16.04 | 190.4 | 4.60 | 0.162 |
Ethane | 30.07 | 305.3 | 4.87 | 0.203 |
Propane | 44.09 | 369.8 | 4.25 | 0.217 |
Ethylene | 28.05 | 282.4 | 5.04 | 0.215 |
Propylene | 42.08 | 364.9 | 4.60 | 0.232 |
Methanol | 32.04 | 512.6 | 8.09 | 0.272 |
Ethanol | 46.07 | 513.9 | 6.14 | 0.276 |
Acetone | 58.08 | 508.1 | 4.70 | 0.278 |
State | Density [kg/m3] | Viscosity [µPa] | Diffusivity [mm2/s] |
---|---|---|---|
Gases P = 1 atm, T= 21 °C | 1 | 10 | 1–10 |
Supercritical fluids P = Pc, T = Tc | 100–1000 | 50–100 | 0.01–0.1 |
Liquids P = 1 atm, T = 15–30 °C | 1000 | 500–1000 | 0.001 |
Compounds | Plant Materials | Bioactivities | References |
---|---|---|---|
Geranylgeraniol | Annatto seed (Bixa Orellana) | anti-inflammatory activity, regulation of testosterone production, action against Chagas disease and leishmaniasis, and anti-cancer activity | [65] |
Curcumin | Turmeric rhizomes (Curcuma longa L.) | antioxidant, antimalaria, antimicrobial, anti-viral properties, fungicidal activity, anti-Alzheimer anti-mutagenic, and anti-carcinogenic qualities | [66] |
Thymol | Thyme (Thymus praecox Polytrichus) | antibacterial, antifungal, anti-inflammatory, antioxidant activities, local anesthetic | [67] |
Eugenol | Purple basil (Ocimum basilicum) | antioxidant, antibacterial and antimicrobial activities | [68] |
Carvacrol | Satureja montana L. | antioxidant, antiproliferative, and anti-cancer | [69] |
Linalool | Coriandrum sativum L. and Ocimum basilicum L. | antimicrobial, anti-carcinogenic, antioxidant and antidiabetic activities | [69] |
Camphor | Sage (Sage officinalis) | anti-inflammatory and anti-atherogenic | [70] |
Xanthohumol | Hops (Humulus lupulus) | antibacterial activity anti-cancer | [71] |
Artemisinin | Artemisia annua L. | antimalaria, antiulcerogenic, antifibrotic and antitumoral activity | [72] |
Compounds | Plant Material | SFE Parameters | Country | References |
---|---|---|---|---|
Pyrrolidine | Leaves of piper amalago (Piperaceae) | Pressure: 150, 200, and 250 bar Temperature: 40, 50, and 60 °C Co-solvents: ethanol, methanol and propyleneglycol 5% (v/v) Extraction time: 20, 40, and 60 min CO2 flow rate: 3 mL/min Particle size: 0.757 mm | Brazil | [76] |
Olchicine, 3-demethylcolchicine, colchicoside | Seeds of wild plants of Colchicum autumnale L. (Colchicaceae) | Temperature: 25, 30, 35 and 40 °C Co-solvent: methanol 3% Extraction time: 0 to 25 min static extraction and 0 to 30 min dynamic extraction Density: 0.80, 0.85 and 0.90 g/mL CO2 flow rate: 1.5 mL/min | Spain | [59] |
Total alkaloids, peimine, peiminine | Flower of Fritillaria thunbergii Miq | Pressure: 150–350 bar Temperature: 50–70 °C Co-solvent: ethanol and water ratio 80:100 (v/v) Extraction time: 90–210 min | China | [62] |
Caffeine | Guayusa leaves (Ilex guayusa Loes) | Pressure: 150, 200 and 250 bar Temperature: 45, 60 and 75 °C Extraction time: 180 min CO2 mass flow: 8.3 g/min | Brazil | [60] |
Tea stalk and fiber waste | Pressure: 150–300 bar Temperature: 50–70 °C Co-solvent: ethanol 1–7 % Extraction time: 60–300 min CO2 flow rate: 10 g/min Particle size: 0.2–0.6 mm | Turkey | [77] | |
Green coffee beans | Pressure: 152, 248 and 352 bar Temperature: 50 and 60 °C Co-solvent: ethanol and isopropyl alcohol 5% (v/v) CO2 flow rate: 1.8 g/min | Brazil | [78] | |
Vinblastine and vincristine | Catharanthus roseus | Pressure: 300 bar Temperature: 40, 50, and 60 °C Co-solvent: ethanol 2, 5 and 10% (v/v) | Brazil | [79] |
Targeted Extract | Plant Materials | SFE Parameters | Country | References |
---|---|---|---|---|
Essential oils | Piper auritum | Pressure: 103.4 and 172.4 bar Temperature: 40 and 50 °C | Mexico | [82] |
Lippia graveolens, (Mexican oregano leaves) | Pressure: 130, 150 and 350 bar Temperature: 40 and 60 °C | Mexico | [48] | |
Essential oils | Spearmint leaves | Pressure: 85–120 bar Temperature: 38–50 °C, CO2 flow rate: 0.059–0.354 g/min Particle size: 0.177–2 mm Dynamic extraction time: 20–120 min | Iran | [83] |
Roots of vetiver grass | Pressure: 145 bar Temperature: 45 °C Co-solvent: ethanol (0, 5, 10 and 15%) | Australia | [84] | |
Clover leaf extract | Pressure: 150, 185 and 220 bar Temperature: 40, 50 and 60 °C | Brazil | [85] | |
Rosemary (Rosmarinus officinalis) | Pressure: 103.4 and 172.4 bar Temperature: 40 and 50 °C Particle size: 0.6 mm | Mexico | [86] | |
Ruta chalepensis | Pressure: 100, 150, 220 bar Temperature: 40 °C Extraction time: 30 min static extraction followed by 220 min of dynamic extraction | Tunisia | [87] | |
Echinophora platyloba | Pressure: 80–240 bar Temperature: 35–55 °C Dynamic extraction time: 30–150 min Particle size: 0.30–0.90 mm | Iran | [88] | |
Raspberry seed oil | Raspberry seed | Pressure: 250, 300 and 350 bar Temperature: 40, 50 and 60 °C CO2 flow rate: 3, 5 and 6 g/min, Particle size: 0.2–0.4 mm Extraction time: 240 min | Serbia | [89] |
Apple seed oil | Apple seed | Pressure: 300, 500, 750, 1000 and 1300 bar Temperatures: 43, 53 and 63 °C | New Zealand | [90] |
Carotenoids | Nantes carrots peels | Pressure: 150, 250 and 350 bar Temperature: 50, 60 and 70 °C Co-solvent: ethanol 5, 10 and 15% (v/v) CO2 flow rate: 15 g/min Extraction time: 80 min | UK | [91] |
Flesh and peels of sweet potato, apricot, tomato, peach and pumpkin, and the flesh and wastes of green, yellow and red peppers | Pressure: 350 bar Temperature: 59 °C Co-solvent: ethanol 15.5% (v/v) CO2 flow rate: 15 g/min Extraction time: 30 min | UK | [92] | |
Mango peels | Temperature: 40–60 °C Pressure: 250–350 bar Co-solvent: ethanol 5–15% (v/v) CO2 flow rate: 6.7 g/min Extraction time: 180 min | Colombia | [93] | |
Germacrene (sesquiterpene) | Leaves of Piper klotzschianum | Pressure: 180, 200, and 220 bar Temperature: 40, 60, 80 °C Co-solvent: methanol, ethanol, isopropanol (1, 3, 5%) | Brazil | [94] |
Green coffee oil | Green coffee beans | Pressure: 200–400 bar Temperature: 40–60 °C Co-solvent: ethanol 0–5.7% (v/v) | Brazil | [95] |
Vouacapan (diterpenes) | Sucupira fruits (Ptedoron spp.) | Pressure: 100–220 bar Temperature: 40–60 °C | Brazil | [96] |
Oxygenated monoterpenes (camphor, 1,8-cineole), α-humulene, viridiflorol, and manool | Salvia officinalis L. (sage) leaves | Pressure: 100–300 bar Temperature: 40–60 °C Extraction time: 90 min | Croatia | [97] |
Lycopene | Tomato peel by-product containing tomato seed | Temperature: 70–90 °C Pressure: 20–40 bar Particle size: 1.05 ± 0.10 mm CO2 flow: 2–4 mL/min Extraction time: 180 min | Japan | [98] |
Geranylgeraniol | Annatto seed | Pressure: 100, 170, 240 and 310 bar Temperature: 40 and 60 °C CO2 densities: 290–915 kg/m3 | Brazil | [65] |
Artemisinin | Artemisia annua L. | Pressure: 100 bar Temperature: 40 °C CO2 flow rate: 13.3–20 g/min | Italy | [72] |
Compounds | Plant Material | Studied Parameters | Country | References |
---|---|---|---|---|
Flavonoids | Strobilanthes crispus (Pecah Kaca) leaves | Pressure: 100, 150 and 200 bar Temperature: 40, 50 and 60 °C Dynamic extraction time: 0, 40, 60 and 80 min | Malaysia | [104] |
Odontonema strictum leaves | Pressure: 200 and 250 bar Temperature: 55–65 °C CO2 flow: 15 g/min Co-solvent: ethanol 95% Extraction time: 210–270 min | Burkina Faso | [106] | |
Flavonoids (Tiliroside) | Tilia L. flower | Pressure: 100–220 bar Temperature: 45–80 °C Time: 20–60 min | Poland | [107] |
Total phenolic compounds, total flavonoids | Radish leaves | Pressure: 300 and 400 bar Temperature: 35, 40, and 50 °C CO2 flow rate: 10 g/min Co-solvent: ethanol | Argentina | [34] |
Flavonoids (hesperidin, nobiletin, and tangeretin) | Citrus genkou peels | Pressure: 100–300 bar Temperature: 40–80 °C | Japan | [108] |
Total phenols | Strawberry (Arbutus unedo L.) | Pressure: 150, 250, 350 bar Temperature: 40, 60, 80 °C Co-solvent: ethanol (0, 10, 20%) CO2 flow rate: 15 g/min Extraction time: 60 min | Turkey | [46] |
Fatty acid | Pomegranate seed oil | Pressure: 240, 280 and 320 bar Temperature: 40,50 and 60 °C CO2 flow rate: 133.3 g/min Extraction time: 180 min | Italy | [42] |
Yacon leaves | Pressure: 150–250 bar Temperature: 30–70 °C Co-solvent: ethanol | Brazil | [109] | |
Phenolic compounds | Hibiscus sabdariffa | Pressure: 150–350 bar Temperature: 40 to 60 °C Co-solvent: ethanol 7–15% Total flow: 25 g/min Extraction time: 90 min | Spain | [110] |
Tocotrienols | Annatto seed | Pressure: 100, 170, 240 and 310 bar Temperature: 40 and 60 °C CO2 densities: 290–915 kg/m3 | Brazil | [65] |
Tocopherol | Quinoa (Chenopodium quinoa Will) | Pressure: 200–400 bar Temperature: 40–60 °C | Spain | [111] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. https://doi.org/10.3390/molecules25173847
Uwineza PA, Waśkiewicz A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules. 2020; 25(17):3847. https://doi.org/10.3390/molecules25173847
Chicago/Turabian StyleUwineza, Pascaline Aimee, and Agnieszka Waśkiewicz. 2020. "Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials" Molecules 25, no. 17: 3847. https://doi.org/10.3390/molecules25173847
APA StyleUwineza, P. A., & Waśkiewicz, A. (2020). Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules, 25(17), 3847. https://doi.org/10.3390/molecules25173847