Channel Waveguides in Lithium Niobate and Lithium Tantalate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laser Processing
2.2. Liquid Phase Epitaxial Crystal Growth
2.3. Optical Characterization
3. Conclusions
4. Materials and Methods
4.1. Femtosecond Laser Machining of Substrates
4.2. Channel Waveguides Grown by Liquid Phase Epitaxy on Laser-Machined Substrates
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tien, P.K. Light waves in thin films and integrated optics. Appl. Opt. 1971, 10, 2395–2413. [Google Scholar] [CrossRef]
- Buchal, C.; Ashley, P.R.; Thomas, D.K. Titanium-implanted optical waveguides in LiNbO3. Mater. Sci. Eng. A 1989, 109, 189–192. [Google Scholar] [CrossRef]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 040603. [Google Scholar] [CrossRef]
- Sumets, M. Lithium Niobate Based Heterostructures; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Miyazawa, S.; Fushimi, S.; Kondo, S. Optical waveguide of LiNbO3 thin film grown by liquid phase epitaxy. Appl. Phys. Lett. 1975, 26, 489–491. [Google Scholar] [CrossRef]
- Lallier, E.; Pocholle, J.P.; Papuchon, M.; de Micheli, M.; Li, M.J.; He, Q.; Ostrowsky, D.B.; Grezes-Besset, C.; Pelletier, E. Nd:MgO:LiNbO3 waveguide laser and amplifier. Opt. Lett. 1990, 15, 682–684. [Google Scholar] [PubMed]
- Marowsky, G. Planar Waveguides and Other Confined Geometries; Springer: New York, NY, USA, 2014. [Google Scholar]
- Poker, D.B.; Thomas, D.K. Effects of different ion-implanted dopant species on the solid phase epitaxy of LiNbO3 optical waveguides. Nucl. Instrum. Methods Phys. Res. B 1989, 39, 716–719. [Google Scholar] [CrossRef]
- Dubs, C.; Ruske, J.P.; Krauslich, J.; Tünnermann, A. Rib waveguides based on Zn-substituted LiNbO3 films grown by liquid phase epitaxy. Opt. Mater. 2009, 31, 1650–1657. [Google Scholar] [CrossRef]
- Bezpaly, A.D.; Verkhuturov, A.O.; Shandarov, V.M. Waveguide and diffraction elements optically generated in surface-doped layers of ferroelectric lithium niobate. In Proceedings of the 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop, Darmstadt, Germany, 21–25 August 2016; pp. 1–4. [Google Scholar]
- Meriche, F.; Boudioua, A.; Kremer, R.; Dogheche, E.; Neiss-Clauss, E.; Mouras, R.; Fischer, A.; Beghoul, M.; Fogarassy, E.; Boutaoui, N. Fabrication and investigation of 1D and2D structures in LiNbO3 thin films by pulsed laser ablation. Opt. Mater. 2010, 32, 1427–1434. [Google Scholar] [CrossRef]
- Jiang, X.D.; Pak, D.; Nandi, A.; Xuan, Y.; Hosseini, M. Rare earth-implanted lithium niobate: Properties and on-chip integration. Appl. Phys. Lett. 2019, 115, 071104. [Google Scholar] [CrossRef]
- Dutta, S.; Goldschmidt, E.A.; Barik, S.; Saha, U.; Waks, E. Integrated photonic platform for rare-earth ions in thin film lithium niobate. Nano Lett. 2020, 20, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Ulliac, G.; Guichardaz, B.; Rauch, J.Y.; Queste, S.; Benchabane, S. Ultra-smooth LiNbO3 micro and nano structures for photonic applications. Microelectron. Eng. 2011, 88, 2417–2419. [Google Scholar] [CrossRef]
- Asobe, M.; Miyazawa, H.; Tadanaga, O.; Nishida, Y.; Suzuki, H. A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter. IEEE J. Quantum Electron. 2003, 39, 1327–1333. [Google Scholar] [CrossRef]
- Hu, H.; Ricken, R.; Sohler, W.; Wehrspohn, W. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technol. Lett. 2007, 19, 417–419. [Google Scholar] [CrossRef]
- Hartung, H.; Kley, E.B.; Tünnermann, A.; Gischkat, T.; Schrempel, F.; Wesch, W. Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. Opt. Lett. 2008, 33, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Takigawa, R.; Higurashi, E.; Kawanishi, T.; Asano, T. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method. Opt. Express 2014, 22, 27733–27738. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Vazquez de Aldana, J.R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev. 2014, 8, 251–275. [Google Scholar] [CrossRef]
- Gui, L.; Xu, B.X.; Chong, T.C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonics Technol. Lett. 2004, 16, 1337–1339. [Google Scholar] [CrossRef]
- Osellame, R.; Lobino, M.; Chiodo, N.; Marangoni, M.; Cerullo, G.; Ramponi, R.; Bookey, H.T.; Thomson, R.R.; Psaila, N.D.; Kar, A.K. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett. 2007, 90, 20133. [Google Scholar] [CrossRef] [Green Version]
- Burghoff, J.; Grebing, C.; Nolte, S.; Tünnermann, A. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate. Appl. Phys. Lett. 2006, 89, 081108. [Google Scholar] [CrossRef]
- Triplett, M.; Khaydarov, J.; Xu, X.; Marandi, M.; Imeshev, G.; Arntsen, J.; Ninan, A.; Miller, G.; Langrock, C. Multi-watt broadband second harmonic generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining. Opt. Exp. 2019, 27, 21102–21115. [Google Scholar] [CrossRef]
- Thomas, J.; Heinrich, M.; Zeil, P.; Hilbert, V.; Rademaker, K.; Reidel, R.; Ringleb, S.; Dubs, C.; Ruske, J.P.; Nolte, S.; et al. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Physica Status Solidi A. 2011, 208, 276–283. [Google Scholar] [CrossRef]
- Martinez de Mendevil, J.; del Hoyo, J.; Solis, J.; Lifante, G. Ridge waveguide laser in Nd:LiNbO3 by Zn- diffusion and femtosecond laser structuring. Opt. Mater. 2016, 62, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.J.; Rabson, T.A. Low-loss thin-film LiNbO3 optical waveguide sputtered onto a SiO2/Si substrate. Opt. Lett. 1993, 18, 811–881. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Walker, D.; Thomas, P.A.; Dobedoe, R.S.; Ren, Z.; Yu, S. Comparison of LiNbO3 flux systems for deposition on RIE-etched LiTaO3 substrates. J. Phys. D Appl. Phys. 2007, 40, 7480–7484. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Chen, H.; Xia, Y. Surface ablation of lithium tantalate by femtosecond laser. Appl. Surf. Sci. 2007, 253, 8874–8878. [Google Scholar] [CrossRef]
- Lu, Y.; Dekker, P.; Dawes, J.M. Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy. J. Cryst. Growth 2009, 311, 1441–1445. [Google Scholar] [CrossRef]
- Polgar, K.; Peter, A.; Foldvari, I.; Szaller, Z. Structural defects in flux-grown stoichiometric LiNbO3 single crystals. J. Cryst. Growth 2000, 218, 327–333. [Google Scholar] [CrossRef]
- Haider, N.; Wilby, M.; Vvedensky, D. Epitaxial growth kinetics on patterned substrates. Appl. Phys. Lett. 1993, 62, 3108–3110. [Google Scholar] [CrossRef]
- Kumar, R.M.; Yamamoto, F.; Ichikawa, J.; Ryoken, H.; Sakaguchi, I.; Liu, X.; Nakamura, M.; Terabe, K.; Takekawa, S.; Haneda, H.; et al. SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide. J. Cryst. Growth 2006, 287, 472–477. [Google Scholar] [CrossRef]
- Courjal, N.; Bernal, M.; Caspar, A.; Ulliac, G.; Bassignot, F.; Gauthier-Manual, L.; Suarez, M. Lithium niobate optical waveguides and micro waveguides. In Emerging Waveguide Technology; You, K.Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Schlarb, U.; Betzler, K. Refractive indices of lithium niobate as a function of temperature, wavelength and composition: A generalized fit. Phys. Rev. B 1993, 48, 15613–15620. [Google Scholar] [CrossRef]
- Abedin, K.S.; Ito, H. Temperature dependent dispersion relation of ferroelectric lithium tantalate. J. Appl. Phys. 1996, 80, 6561–6563. [Google Scholar] [CrossRef]
- Guha, S.; Majerfeld, A.; Moyes, N.; Robson, P. Surface morphology of liquid phase epitaxial InP. Electron. Lett. 1975, 11, 303–304. [Google Scholar] [CrossRef]
- Ramponi, R.; Osellame, R.; Marangoni, M. Two straightforward methods for the measurement of optical losses in planar waveguides. Rev. Sci. Instrum. 2002, 73, 1117–1120. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Johnston, B.; Dekker, P.; Withford, M.J.; Dawes, J.M. Channel Waveguides in Lithium Niobate and Lithium Tantalate. Molecules 2020, 25, 3925. https://doi.org/10.3390/molecules25173925
Lu Y, Johnston B, Dekker P, Withford MJ, Dawes JM. Channel Waveguides in Lithium Niobate and Lithium Tantalate. Molecules. 2020; 25(17):3925. https://doi.org/10.3390/molecules25173925
Chicago/Turabian StyleLu, Yi, Benjamin Johnston, Peter Dekker, Michael J. Withford, and Judith M. Dawes. 2020. "Channel Waveguides in Lithium Niobate and Lithium Tantalate" Molecules 25, no. 17: 3925. https://doi.org/10.3390/molecules25173925
APA StyleLu, Y., Johnston, B., Dekker, P., Withford, M. J., & Dawes, J. M. (2020). Channel Waveguides in Lithium Niobate and Lithium Tantalate. Molecules, 25(17), 3925. https://doi.org/10.3390/molecules25173925