Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thin Films Deposition
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Williams, G.R.; O’Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074. [Google Scholar] [CrossRef]
- Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Micropor. Mesopor. Mat. 2008, 107, 149–160. [Google Scholar] [CrossRef]
- Forano, C.; Hibino, T.; Leroux, F.; Taviot-Guého, C. Layered double hydroxides. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 1021–1095. [Google Scholar]
- Costantino, U.; Gallipoli, A.; Nocchetti, M.; Camino, G.; Bellucci, F.; Frache, A. New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcites. Polym. Degrad. Stab. 2005, 90, 586–590. [Google Scholar] [CrossRef]
- He, F.; Zhang, L.; Yang, F.; Chen, L.; Wu, Q. New nanocomposites based on syndiotactic polystyrene and organo-modified ZnAl layered double hydroxide. J. Polym. Res. 2006, 13, 483–493. [Google Scholar] [CrossRef]
- Aguzzi, A.; Ambrogi, V.; Costantino, U.; Marmottini, F. Intercalation of acrylate anions into the galleries of Zn–Al layered double hydroxide. J. Phys. Chem. Solids 2007, 68, 808–812. [Google Scholar] [CrossRef]
- Plank, J.; Dai, Z.; Andres, P.R. Preparation and characterization of new Ca-Al-polycarboxylate layered double hydroxides. Mater. Lett. 2006, 60, 3614–3617. [Google Scholar] [CrossRef]
- Rives, V.; Ulibarri, M.A. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 1999, 181, 61–120. [Google Scholar] [CrossRef]
- Jin, S.; Fallgren, P.H.; Morris, J.M.; Chen, Q. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci. Technol. Adv. Mater. 2007, 8, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Mitu, B.; Dinescu, M.; Zavoianu, R.; Pavel, O.D. Retention of heavy metals on layered double hydroxides thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 2014, 302, 99–104. [Google Scholar] [CrossRef]
- Matei, A.; Birjega, R.; Nedelcea, A.; Vlad, A.; Colceag, D.; Ionita, M.D.; Luculescu, C.; Dinescu, M.; Zavoianu, R.; Pavel, O.D. Mg-Al layered double hydroxides (LDHs) and their derived mixed oxides grown by laser techniques. Appl. Surf. Sci. 2011, 257, 5308–5311. [Google Scholar]
- Matei, A.; Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C.; Zavoianu, R.; Pavel, O.D.; Dinescu, M. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques. Appl. Surf. Sci. 2012, 258, 9466–9470. [Google Scholar] [CrossRef]
- Matei, A.; Birjega, R.; Vlad, A.; Luculescu, C.; Epurescu, G.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Pavel, O.D. Pulsed laser deposition of Mg–Al layered double hydroxide with Ag nanoparticles. Appl. Phys. A Mater. 2013, 110, 841–846. [Google Scholar] [CrossRef]
- Birjega, R.; Matei, A.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Colceag, R.; Zavoianu, R.; Pavel, O.D.; Dinescu, M. The investigation of Ni-Al and Co-Al based layered double hydroxides and their derived mixed oxides thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 2013, 278, 122–126. [Google Scholar] [CrossRef]
- Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M.; Zavoianu, R.; Pavel, O.D.; et al. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation. Thin Solid Films 2013, 543, 63–68. [Google Scholar] [CrossRef]
- Purice, A.; Schou, J.; Kingshott, P.; Dinescu, M. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm. Chem. Phys. Lett. 2007, 435, 350–353. [Google Scholar] [CrossRef]
- Dumitrescu, L.N.; Neacsu, P.; Necula, M.G.; Bonciu, A.; Marascu, V.; Cimpean, A.; Moldovan, A.; Rotaru, A.; Dinca, V.; Dinescu, M. Induced Hydrophilicity and In Vitro Preliminary Osteoblast Response of Polyvinylidene Fluoride (PVDF) Coatings Obtained via MAPLE Deposition and Subsequent Thermal Treatment. Molecules 2020, 25, 582. [Google Scholar] [CrossRef] [Green Version]
- Canulescu, S.; Schou, J.; Fæster, S.; Hansen, K.V.; Conseil, H. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE). Chem. Phys. Lett. 2013, 588, 119–123. [Google Scholar] [CrossRef]
- Darwish, A.M.; Moore, S.; Mohammad, A.; Alexander, D.; Bastian, T.; Dorlus, W.; Sarkisov, S.; Patel, D.; Mele, P.; Koplitz, B.; et al. Polymer nano-composite films with inorganic upconversion phosphor and electro-optic additives made by concurrent triple-beam matrix assisted and direct pulsed laser deposition. Compos. Part B Eng. 2017, 109, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Lim, M.S.; Feng, K.; Chen, X.; Wu, N.; Raman, A.; Nightingale, J.; Gawalt, E.S.; Korakakis, D.; Hornak, L.A.; Timperman, A.T. Adsorption and Desorption of Stearic Acid Self-Assembled Monolayers on Aluminum Oxide. Langmuir 2007, 23, 2444–2452. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Zhong, L.; Wang, J.; Jiang, Q.; Guo, X. Super-hydrophobic surface on pure magnesium substrate by wet chemical method. Appl. Surf. Sci. 2010, 256, 3837–3840. [Google Scholar] [CrossRef]
- Wu, R.; Liang, S.; Pan, A.; Yuan, Z.; Tang, Y.; Tan, X.; Guan, D.; Yu, Y. Fabrication of nano-structured super-hydrophobic film on aluminum by controllable immersing method. Appl. Surf. Sci. 2012, 258, 5933–5937. [Google Scholar] [CrossRef]
- Chu, Q.; Liang, J.; Hao, J. Facile fabrication of a robust super-hydrophobic surface on magnesium alloy. Colloids Surf. Physicochem. Eng. Aspects 2014, 443, 118–122. [Google Scholar] [CrossRef]
- Cui, X.; Lin, X.; Liu, C.; Yang, R.; Zheng, X.; Gong, M. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corros. Sci. 2015, 90, 402–415. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, S.; Hu, J.; Li, T. Formation mechanism and corrosion resistance of the hydrophobiccoating on anodized magnesium. Corros. Sci. 2016, 111, 334–343. [Google Scholar] [CrossRef]
- Mojiri Forooshani, H.; Aliofkazraei, M.; Sabour Rouhaghdam, A. Superhydrophobic copper surfaces by shot penning and chemical treatment. Surf. Rev. Lett. 2017, 24, 1750093. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Cheng, Y.F. Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance. Surf. Coat. Technol. 2018, 340, 55–65. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, A.; Hang, T.; Li, M. Electrodeposition nanostructured cobalt film and its dual modulation on both superhydrophobic property and adhesiveness. Appl. Surf. Sci. 2014, 324, 319–323. [Google Scholar] [CrossRef]
- Geng, W.; Hu, A.; Li, M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro–nano cones array. Appl. Surf. Sci. 2012, 263, 821–824. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, T.-Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface. J. Colloid. Interface Sci. 2012, 377, 438–441. [Google Scholar] [CrossRef]
- Khorsand, S.; Raeissi, K.; Ashrafizadeh, F. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process. Appl. Surf. Sci. 2014, 305, 498–505. [Google Scholar] [CrossRef]
- Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.; Arenas, M.A. Super-hydrophobic nickel-cobalt alloy coating with micro-nano flower-like structure. Chem. Eng. 2015, 273, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.; Arenas, M.A. Relationship between the structure and water repellency of nickel–cobalt alloy coatings prepared by electrodeposition process. Surf. Coat. Technol. 2015, 276, 296–304. [Google Scholar] [CrossRef]
- Liu, P.; Cao, P.; Zhao, W.; Xia, Y.; Huang, W.; Li, Z. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons. Appl. Surf. Sci. 2015, 324, 576–583. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Zhang, J.; Yu, S.; Han, Z.; Ren, L. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochim. Acta 2014, 125, 395–403. [Google Scholar] [CrossRef]
- Liang, M.; Wei, Y.; Hou, L.; Wang, H.; Li, Y.; Guo, C. Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method. J. Alloys Compounds 2016, 656, 311–317. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Z.; Liu, Y.; Qi, C.; Zhang, J. Reducing Friction and Wear of a Zinc Substrate by Combining a Stearic Acid Overcoat with a Nanostructured Zinc Oxide Underlying Film: Perspectives to Super-Hydrophobicity. Tribol. Lett. 2011, 44, 327–333. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, B.; Li, L.; Zeng, Z.; Zhao, W.; Wang, G.; Guan, X. Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation. J. Phys. Chem. A 2016, 120, 5617–5623. [Google Scholar] [CrossRef]
- Maege, I.; Jaehne, E.; Henke, A.; Adler, H.-J.P.; Bram, C.; Jung, C.; Stratmann, M. Self-assembling adhesion promoters for corrosion resistant metal polymer interface. Prog.Org. Coat. 1998, 34, 1–12. [Google Scholar] [CrossRef]
- Pertays, K.M.; Thompson, G.E.; Alexander, M.R. Self-assembly of stearic acid on aluminium: the importance of oxide surface chemistry. Surf. Interface Anal. 2004, 36, 1361–1366. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Zeng, R.; Song, L.; Guo, L.; Huang, X. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg-Al layered double hydroxide coatings on magnesium alloys. Metals 2016, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ruengkajorn, K.; Buffet, J.-C.; O’Hare, D. Water adsorbancy of high surface area layered double hydroxides (AMO-LDHs). RCS Adv. 2018, 8, 34650. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of thin films are available from the authors. |
Labels | Deposition Conditions |
---|---|
StMAPLE(266 nm) | Film of Pure Stearic Acid Deposited by MAPLE, at 266 nm Wavelength |
Mg2.5AlPLD(266 nm) | Films of pristine Mg2.5Al deposited by standard PLD, at 266 nm wavelength |
Mg2.5AlPLD(1064 nm) | Films of pristine Mg2.5Al deposited by standard PLD, at 1064 nm wavelength |
StMAPLE (266 nm)/Mg2.5AlPLD(266 nm) | Stearic acid/layered double hydroxide composite thin films deposited by combined MAPLE-PLD: MAPLE at 266 nm and PLD at 266 nm wavelength |
StMAPLE (266 nm)/Mg2.5AlPLD(1064 nm) | Stearic acid/layered double hydroxide composite thin films deposited by combined MAPLE-PLD: MAPLE at 266 nm and PLD at 1064 nm wavelength |
Samples | Structural Data | RMS (nm) | |
---|---|---|---|
StMAPLE(266 nm) | amorphous | 8 | |
c-oriented LDH | |||
c (Å) | D003 (nm) | ||
Mg2.5AlPLD(266 nm) | 23.355 | 8.9 | 80 |
Mg2.5AlPLD(1064 nm) | 23.303 | 10.0 | 23 |
StMAPLE (266 nm)/Mg2.5AlPLD(266 nm) | 23.188 | 7.7 | 102 |
StMAPLE (266 nm)/Mg2.5AlPLD(1064 nm) | 23.262 | 10.1 | 18 |
Samples | Time | O-H Vibrations of LDH Component | C-H of Stearic Acid Vibrations | |||
---|---|---|---|---|---|---|
OH-M | H2O-H2O bridges | CO32--H | νaCH2 | νaCH2/νaCH3 | ||
Stearic acid NIST standard | 2915 | 0.9 | ||||
StMAPLE (266 nm) | as-deposited | 2916 | 17.02 | |||
36 months storage | 2916 | 2.62 | ||||
Mg2.5AlPLD(266 nm) | as-deposited | 3561 cm−1 (0.04%) | 3411 cm−1 (0.83%) | 3230 cm −1 (0.13%) | ||
StMAPLE(266 nm)/Mg2.5AlPLD(266 nm) | as-deposited | 3488 cm−1 (0.31%) | 3342 cm−1 (0.26%) | 3055cm−1 (0.43%) | ||
36 months storage | 3474 cm−1 (0.54%) | 3286 cm−1 (0.46 %) | - | 2923 | 10.76 | |
Mg2.5AlPLD(1064 nm) | as-deposited | 3571 cm−1 (0.13%) | 3426 cm−1 (0.70%) | 3247 cm −1 (0.17%) | ||
StMAPLE9266 nm)/Mg2.5AlPLD(1064 nm) | as-deposited | 3461 cm−1 (0.20%) | 3318 cm−1 (0.25%) | 3023 cm −1 (0.55%) | ||
36 months storage | 3445 cm−1 (0.45%) | 3271 cm−1 (0.55%) | - | 2917 | 10.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birjega, R.; Matei, A.; Marascu, V.; Vlad, A.; Ionita, M.D.; Dinescu, M.; Zăvoianu, R.; Corobea, M.C. Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques. Molecules 2020, 25, 4097. https://doi.org/10.3390/molecules25184097
Birjega R, Matei A, Marascu V, Vlad A, Ionita MD, Dinescu M, Zăvoianu R, Corobea MC. Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques. Molecules. 2020; 25(18):4097. https://doi.org/10.3390/molecules25184097
Chicago/Turabian StyleBirjega, Ruxandra, Andreea Matei, Valentina Marascu, Angela Vlad, Maria Daniela Ionita, Maria Dinescu, Rodica Zăvoianu, and Mihai Cosmin Corobea. 2020. "Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques" Molecules 25, no. 18: 4097. https://doi.org/10.3390/molecules25184097
APA StyleBirjega, R., Matei, A., Marascu, V., Vlad, A., Ionita, M. D., Dinescu, M., Zăvoianu, R., & Corobea, M. C. (2020). Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques. Molecules, 25(18), 4097. https://doi.org/10.3390/molecules25184097