Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Cl−
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Measurements
2.1.1. Cyclic Potentiodynamic Polarization (CPP) Curves
2.1.2. Electrochemical Impedance Spectroscopy Measurement
2.1.3. Effect of Pre-Filming Time on Compound Inhibitors
2.2. Surface Analysis
2.2.1. Scanning Electron Microscope
2.2.2. X-ray Photoelectron Spectroscopy Analysis
3. Discussion
3.1. Corrosion Inhibition Mechanism of Tested Inhibitors
3.2. Synergistc Inhibition Effect between CLS and Inorganic Inhibitors
4. Experiment Details
4.1. Materials and Test Solutions
4.2. Electrochemical Measurements
4.3. Surface Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, B.; Zuo, Y. Inhibition of Q235 carbon steel by calcium lignosulfonate and sodium molybdate in carbonated concrete pore solution. Molecules 2019, 24, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Fischer, H.; Polder, R. Synthesis and characterization of modifified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution. Cem. Concr. Compos. 2014, 47, 87–93. [Google Scholar] [CrossRef]
- Obot, I.B.; Solomon, M.M.; Umoren, S.A.; Suleiman, R.; Elanany, M.; Alanazi, N.M.; Sorour, A.A. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives. J. Ind. Eng. Chem. 2019, 79, 1–18. [Google Scholar] [CrossRef]
- Cao, F.; Wei, J.; Dong, J.; Ke, W. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution. Corros. Sci. 2015, 100, 365–376. [Google Scholar] [CrossRef]
- Tang, F.; Wang, X.; Xu, X.; Li, L. Phytic acid doped nanoparticles for green anticorrosion coatings. Colloids Surf. A 2010, 369, 101–105. [Google Scholar] [CrossRef]
- Mohamed, H.A. Eco-friendly zero VOC anticorrosive paints for steel protection. J. Appl. Polym. Sci. 2012, 125, 1790–1795. [Google Scholar] [CrossRef]
- Qu, Q.; Li, L.; Bai, W.; Jiang, S.; Ding, Z. Sodium tungstate as a corrosion inhibitor of cold rolled steel in peracetic acid solution. Corros. Sci. 2009, 51, 2423–2428. [Google Scholar] [CrossRef]
- Robertson, W.D. Molybdate and tungstate as corrosion inhibitors and the mechanism of inhibition. J. Electrochem. Soc. 1951, 98, 94–100. [Google Scholar] [CrossRef]
- Bansod, A.V.; Patil, A.P.; Suranshe, S. Pitting corrosion behavior of Cr-Mn austenitic stainless steel with addition of molybdate and tungstate under stagnant and flow condition in NaCl solution. J. Fail. Anal. Prev. 2017, 17, 1241–1250. [Google Scholar] [CrossRef]
- Kumari, V.A.; Sreevalsan, K.; Shibli, S.M.A. Sodium molybdate for the effective protection of steel: A comprehensive review. Corros. Prev. Control 2001, 48, 83–109. [Google Scholar]
- Mu, G.; Li, X.; Qu, Q.; Zhou, J. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution. Corros. Sci. 2006, 48, 445–459. [Google Scholar] [CrossRef]
- Zhou, Y.; Zuo, Y. The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution. Appl. Surf. Sci. 2015, 353, 924–932. [Google Scholar] [CrossRef]
- Cheng, T.; Lee, J.; Tsai, W. Passivation of titanium in molybdate-containing sulphuric acid solution. Electrochim. Acta 1991, 36, 2069–2076. [Google Scholar] [CrossRef]
- Celeste, R.A.; Idalina, V.A. Localized corrosion inhibition of 304 stainless steel in pure water by oxyanions tungstate and molybdate. Electrochim. Acta 2004, 49, 2779–2785. [Google Scholar]
- Wu, S.; Zhang, Q.; Sun, D.; Luan, J.; Shi, H.; Hu, S.; Tang, Y.; Wang, H. Understanding the synergistic effect of alkyl polygucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chem. Eng. J. 2020, 383, 123162. [Google Scholar] [CrossRef]
- Zeng, X.X.; Wang, J.M.; Wang, Q.L.; Kong, D.S.; Shao, H.B.; Zhang, J.Q.; Cao, C.N. The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical pertormances of pure aluminum in an alkaline methanol-water solution. Mater. Chem. Phys. 2010, 121, 459–464. [Google Scholar] [CrossRef]
- Thomaz, T.R.; Weber, C.R.; Pelegrini, T.; Dick, L.F.; Knrnschild, G. The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions. Corros. Sci. 2010, 52, 2235–2243. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, J.; Zuo, J.; Liu, Q.; Zhang, H.; Dong, S.; Du, R.; Lin, J. Synergistic inhibition effect of sodium tungstate and hexamethylene tetramine on reinforcing steel corrosion. J. Electrochem. Soc. 2015, 162, C555–C562. [Google Scholar] [CrossRef]
- Mustafa, C.M.; Dulal, S.M.S. Molybdate and nitrite as corrosion inhibitors for copper-coupled steel in simulated cooling water. Corrosion 1996, 52, 16. [Google Scholar] [CrossRef]
- Mehdi, J.; Roya, O. Synergistic inhibition behavior of sodium tungstate and penicillin G as an eco-friendly inhibitor on pitting corrosion of 304 stainless steel in NaCl solution using Design of Experiment. J. Mol. Liq. 2019, 291, 111330. [Google Scholar]
- Lin, B.; Zuo, Y. Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution. RSC Adv. 2019, 9, 7065–7077. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zuo, Y.; Lin, B. The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaCl+ NaHCO3 solution. Mater. Chem. Phys. 2017, 192, 86–93. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, Y.; Zhao, X.; Zha, S. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution. Appl. Surf. Sci. 2016, 379, 98–110. [Google Scholar] [CrossRef]
- Wu, M.; Ma, H.; Shi, J. Enhanced corrosion resistance of reinforcing steels in simulated concrete pore solution with low molybdated to chloride ratios. Cem. Concr. Compos. 2020, 110, 103589. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Sun, W. Electrochemical performance of reinforcing steel in alkali-activated slag extract in the presence of chlorides. Corros. Sci. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Bensabra, H.; Franczak, A.; Aaboubi, O.; Azzouz, N.; Chopart, J.P. Inhibitive effect of molybdate ions on the electrochemical behavior of steel rebar in simulated concrete pore solution. Metall. Mater. Trans. 2017, 48, 412–424. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Giacomelli, C.; Giacomelli, F.C.; Spinelli, A. Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Mater. Chem. Phys. 2004, 83, 129–134. [Google Scholar] [CrossRef]
- Bouanis, M.; Tourabi, M.; Nyassi, A.; Zarrouk, A.; Jama, C.; Bentiss, F. Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies. Appl. Surf. Sci. 2016, 389, 952–966. [Google Scholar] [CrossRef]
- Ou, H.H.; Tran, Q.T.P.; Lin, P.H. A synergistic effect between gluconate and molybdate on corrosion inhibition of recirculating cooling water systems. Corros. Sci. 2018, 133, 231–239. [Google Scholar] [CrossRef]
- Eghbali, F.; Moayed, M.H.; Davoodi, A.; Ebrahimi, N. Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations. Corros. Sci. 2011, 53, 513–522. [Google Scholar] [CrossRef]
- Refaey, S.A.M.; El-Rehim, S.S.A.; Taha, F.; Saleh, M.B.; Ahmed, R.A. Inhibition of chloride localized corrosion of mild steel by PO43−, CrO42−, MoO42−, and NO2− anions. Appl. Surf. Sci. 2000, 158, 190–196. [Google Scholar] [CrossRef]
- Blin, F.; Koutsoukos, P.; Klepetsianis, P.; Forsyth, M. The corrosion inhibition mechanism of new rare earth cinnamate compounds-Electrochemical studies. Electrochim. Acta 2007, 52, 6212–6220. [Google Scholar] [CrossRef]
- Lin, B.; Zuo, Y.; Tang, Y.M.; Zhao, X.H.; Rostron, P. Electrochemical comparative study of Q235 steel and 304SS in simulated concrete pore solutions and the effect of chloride ions on their corrosion behavior. Int. J. Electrochem. Sci. 2019, 14, 3081–3094. [Google Scholar] [CrossRef]
- Danaee, I.; Khomami, M.N.; Attar, A.A. Corrosion behavior of AISI 4130 steel alloy in ethylene glycol-water mixture in presence of molybdate. Mater. Chem. Phys. 2012, 135, 658–667. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Burstein, G.T. The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions. Corros. Sci. 2003, 45, 1545–1569. [Google Scholar] [CrossRef]
- Breslin, C.B.; Treacy, G.; Carroll, W.M. Studies on the passivation of aluminium in chromate and molybdate solutions. Corros. Sci. 1994, 36, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Garrity, O.; Frankel, G.S. Corrosion Inhibition of Aluminum Alloy 2024-T3 by Sodium Molybdate. J. Electrochem. Soc. 2013, 161, 95. [Google Scholar] [CrossRef]
- Trueba, M. The repassivation response from single cycle anodic polarization: The case study of a sensitized Al-Mg alloy. Electrochim. Acta 2018, 259, 492–499. [Google Scholar] [CrossRef]
- Saremi, M.; Mahallati, E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement Concr. Res. 2020, 32, 1915–1921. [Google Scholar] [CrossRef]
- Tourabi, M.; Nohair, K.; Nyassi, A. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/3,5-bis(3,4-dimethoxyphenyl)-4-amino-1,2,4-triazole/hydrochloric acid system. J. Mater. Enviro. Sci. 2014, 5, 1133–1143. [Google Scholar]
- Tang, J.; Hu, Y.; Han, Z.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wang, Y.Y. Experimental and Theoretical study on the synergistic inhibition effect of pyridine derivatives and sulfur-containing compounds on the corrosion of carbon steel in CO2-saturated 3.5 wt% NaCl solution. Molecules 2018, 23, 3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Hu, Y.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wang, Y.; Normand, B. Complicated synergistic effects between three corrosion inhibitors for Q235 steel in a CO2-saturated 3.5% NaCl solution. Int. J. Electrochem. Sci. 2018, 14, 2246–2264. [Google Scholar] [CrossRef]
- Han, P.; Li, W.; Tian, H.; Gao, X.; Ding, R.; Xiong, C.; Chen, C. Designing and fabricating of time-depend self-strengthening inhibitor film: Synergistic inhibition of sodium dodecyl sulfate and 4-mercaptopyridine for mild steel. J. Mol. Liq. 2018, 268, 425–437. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Zuo, Y. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors. Appl. Surf. Sci. 2015, 357, 735–744. [Google Scholar] [CrossRef]
- Vagin, M.Y.; Trashin, S.A.; Ozkan, S.Z.; Karpachova, G.P.; Karyakin, A.A. Electroactivity of redox-inactive proteins at liquid/liquid interface. J. Electroanal. Chem. 2005, 584, 110–116. [Google Scholar] [CrossRef]
- Frateur, I.; Carnot, A.; Zanna, S.; Marcus, P. Role of pH and calcium ions in the adsorption of an alkyl N-aminodimethylphosphonate on steel: An XPS study. Appl. Surf. Sci. 2006, 252, 2757–2769. [Google Scholar] [CrossRef]
- Zhang, F.; Pan, J.; Claesson, P.M. Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel. Electrochim. Acta 2011, 56, 1636–1645. [Google Scholar] [CrossRef]
- Olivares, O.; Likhanova, N.V.; Gómez, B.; Navarrete, J.; Llanos-Serrano, M.E.; Arce, E.; Hallen, J.M. Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl. Surf. Sci. 2006, 252, 2894–2909. [Google Scholar] [CrossRef]
- Dong, Z.H.; Shi, W.; Guo, X.P. Localized Corrosion Inhibition of Carbon Steel in Carbonated Concrete Pore Solutions Using Wire Beam Electrodes. Acta Phys. Chim. Sin. 2011, 27, 127–134. [Google Scholar]
- Nakayama, N. Inhibitory effects of nitrilotris (methylenephosphonic acid) on cathodic reactions of steels in saturated Ca(OH)2 solutions. Corros. Sci. 2000, 42, 1897–1920. [Google Scholar] [CrossRef]
- Pang, X.; Ran, X.; Fei, K.; Xie, J.; Hou, B. Inhibiting Effect of Ciprofloxacin, Norfloxacin and Ofloxacin on Corrosion of Mild Steel in Hydrochloric Acid. Chin. J. Chem. Eng. 2010, 18, 337–345. [Google Scholar] [CrossRef]
- Tang, Y.; Zuo, Y.; Wang, J.; Zhao, X.; Niu, B.; Lin, B. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corros. Sci. 2014, 80, 111–119. [Google Scholar] [CrossRef]
- Clayton, C.R.; Lu, Y.C. A bipolar model of the passivity of stainless steels-III. The mechanism of MoO42− formation and incorporation. Corros. Sci. 1989, 29, 881–898. [Google Scholar] [CrossRef]
- Saranya, P.E.; Selladurai, S. Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J. Mater. Sci. 2018, 53, 16022–16046. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, Y.; Mei, J.; Tang, C.; Luo, K.; Li, S.; Zhan, H. Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensor. Actuat. B Chem. 2019, 301, 127010. [Google Scholar] [CrossRef]
- Jian, Q.; Hao, X.; Jin, Z. Properties of monoclinic wolframite structure InWO4 for efficient and sustainable photocatalytic hydrogen evolution. New J. Chem. 2019, 43, 12668–12677. [Google Scholar] [CrossRef]
- Shivani, V.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y. Highly efficient 3-D hierarchical Bi2WO6 catalyst for environmental remediation. Appl. Surf. Sci. 2019, 488, 696–706. [Google Scholar] [CrossRef]
- Muñoz, A.I.; Antón, J.G.; Nuévalos, S.L.; Guiñón, J.L.; Herranz, V.P. Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures. Corros. Sci. 2004, 46, 2955–2974. [Google Scholar] [CrossRef]
- Mohamed, N.; Boulfiza, M.; Evitts, R. Corrosion of carbon steel and corrosion resistant rebars in concrete structure under chloride ion attack. J. Mater. Eng. Perform. 2013, 22, 787–795. [Google Scholar] [CrossRef]
- Rutland, M.W.; Parker, J.L. Surfaces forces between silica surfaces incationic surfactant solutions: Adsorption and bilayer formation at normal and high pH. Langmuir 1994, 10, 1110–1121. [Google Scholar] [CrossRef]
- Sahoo, G.; Balasubramaniam, R. On the corrosion behaviour of phosphoric irons in simulated concrete pore solution. Corros. Sci. 2008, 50, 131–143. [Google Scholar] [CrossRef]
- Emregül, K.C.; Aksüt, A.A. The effect of sodium molybdate on the pitting corrosion of aluminum. Corros. Sci. 2003, 45, 2415–2433. [Google Scholar] [CrossRef]
- Aoyama, T.; Nagoshi, M.; Tachibana, S.; Shiotani, K. An ultrathin corrosion-resistant film on a steel surface formed by dipping in a tungstate solution. J. Surf. Sci. Nanotehc. 2016, 14, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.L.; Wang, Y.; Li, Y.; Jin, J.; Feng, Y.; Ming, R.D.; Cao, G.; Wang, M.; Zhang, M. The effect of different concentrations of Na2SnO3 on the electrochemical behaviors of the Mg-8Li electrode. Ionics 2014, 20, 1573–1578. [Google Scholar] [CrossRef]
- Stranick, M.A. The corrosion inhibition of metals by molybdate. 1. Mild-steel. Corrosion 1984, 40, 296–302. [Google Scholar] [CrossRef]
- Yu, H.; Chiang, K.T.K. Threshold chloride level and characteristics of reinforcement corrosion initiation in simulated concrete pore solutions. Construct. Build. Mater. 2012, 26, 723–729. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Position | 711.7 eV (FeOOH/Fe2O3) | 709.7 eV (Fe3O4) | 707.1 eV (Fe2+) | 706.0 eV (Fe0) |
---|---|---|---|---|
CLS | 14.49% | 48.31% | 24.15% | 13.04% |
CLS + Molybdate | 28.57% | 46.08% | 14.29% | 11.06% |
CLS + Stannate | 18.58% | 54.64% | 10.93% | 15.85% |
CLS + Tungstate | 17.65% | 53.48% | 21.93% | 6.95% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Tang, J.; Wang, Y.; Wang, H.; Zuo, Y. Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Cl−. Molecules 2020, 25, 4200. https://doi.org/10.3390/molecules25184200
Lin B, Tang J, Wang Y, Wang H, Zuo Y. Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Cl−. Molecules. 2020; 25(18):4200. https://doi.org/10.3390/molecules25184200
Chicago/Turabian StyleLin, Bing, Junlei Tang, Yingying Wang, Hu Wang, and Yu Zuo. 2020. "Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Cl−" Molecules 25, no. 18: 4200. https://doi.org/10.3390/molecules25184200
APA StyleLin, B., Tang, J., Wang, Y., Wang, H., & Zuo, Y. (2020). Study on Synergistic Corrosion Inhibition Effect between Calcium Lignosulfonate (CLS) and Inorganic Inhibitors on Q235 Carbon Steel in Alkaline Environment with Cl−. Molecules, 25(18), 4200. https://doi.org/10.3390/molecules25184200