Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of trans-3-(2,4,6-Trimethoxyphenyl)-4,5-dihydroisoxazolo-4,5-bis(phenylcarbohydrazide) 10a–c
2.2. Antimicrobial Activity
2.3. Antioxidant Activity
3. Materials and Methods
3.1. Materials
3.2. Preparation of 2,4,6-Trimethoxybenzaldoxime
3.3. Preparation of 2,4,6-Trimethoxybenzonitrile Oxide 1a
3.4. Preparation of trans-Dimethyl 3-(2,4,6-trimethoxy phenyl)-4,5-dihydro-4,5-isoxazoledicarboxylate 5a
3.5. Preparation of trans-3-(2,4,6-Trimethoxyphenyl)-4,5-dihydro-4,5-bis(hydrazenocarbonyl)isoxazole 8a
3.6. Preparation of trans-3-(2,4,6-Trimethoxyphenyl)4,5-dihydroisoxazolo-4,5-bis[carbonyl-(4′phenyl)thiosemicarbazide] 9
3.7. Preparation of trans-3-(2,4,6-Trimethoxyphenyl)-4,5-dihydroisoxazolo-4,5-bis(aroylcarbohydrazide) 10a–c
3.8. Antimicrobial Activity
3.9. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jung, H.K.; Doddareddya, M.R.; Cha, J.H.; Rhim, H.; Cho, Y.S.; Koh, H.Y.; Jung, B.Y.; Pae, A.N. Synthesis and biological evaluation of novel T-type Ca2+ channel blockers. Bioorg. Med. Chem. 2004, 12, 3965–3970. [Google Scholar] [CrossRef] [PubMed]
- Popat, K.H.; Nirmavat, K.S.; Kachhadia, V.V.; Joshi, H.S. Synthesis and biological activity of 3-aryl-5-(3′-bromo/chlorophenyl) isoxazoles. J. Indian Chem. Soc. 2003, 80, 707–708. [Google Scholar] [CrossRef]
- Norman, B.H.; Lander, P.A.; Gruber, J.M.; Kroin, J.S. Cyclohexyl-linked tricyclic isoxazoles are potent and selective modulators of the multidrug resistance protein (MRP1). Bioorg. Med. Chem. Lett. 2005, 15, 5526–5530. [Google Scholar] [CrossRef] [PubMed]
- Nyati, M.; Rao, S.N.; Srivastav, K.Y.; Verma, L.B. Microwave induced synthesis and antimicrobial activity of some 3-benzimidazolyl-5 aryl-2-isoxazolines. Indian J. Heterocycl. Chem. 2006, 15, 295–296. [Google Scholar]
- Diana, G.D.; McKinlay, M.A.; Brisson, C.J.; Zalay, E.S.; Miralles, J.V.; Salvador, U.J. Isoxazoles with antipicornavirus activity. J. Med. Chem. 1985, 28, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Kiran Kumar, A.B.V.; Uma Ravi Sankar, A.; Kim, S.H. A simple, efficient one-pot synthesis of 2-isoxazoline derivatives and their antimicrobial activity. J. Heterocycl. Chem. 2014, 51 (Suppl. S1), E146–E151. [Google Scholar] [CrossRef]
- Prajapti, S.K.; Shrivastava, S.; Bihade, U.; Gupta, A.K.; Naidu, V.G.M.; Banerjee, U.C.; Babu, B.N. Synthesis and biological evaluation of novel Δ2-isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MedChemComm 2015, 6, 839–845. [Google Scholar] [CrossRef]
- Antczak, C.; Bauvois, B.; Monneret, C.; Florent, J.C. A new acivicin prodrug designed for tumor-targeted delivery. Bioorg. Med. Chem. 2001, 9, 2843–2848. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Ghezawi, N.M. 1, 3-Dipolar cycloaddition of nitrile oxides with cis-and trans-ethylene-substituted. DELTA. 2-isoxazoline derivatives. J. Chem. Eng. Data 1987, 32, 383–384. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T. 1,3-Dipolar cycloaddition reactions of substituted benzyl azides with acetylenic compounds. Molecules 2002, 7, 302–314. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T. 1,3 Dipolar cycloaddition reactions of aromatic nitrile oxides with disubstituted acetylenes and disubstituted ethylenes. Part IV. Mutah J. Res. Stud. Nat. Appl. Sci. Ser. 1995, 10, 79–88. [Google Scholar]
- Abu-Orabi, S.T.; Al-Hamdany, R.; Al-Momany, L.A.; Ta’an, E.A. Reactions of isoxazoline and isoxazole derivatives with hydraaaazine hydrate. Asian J. Chem. 1999, 11, 1276. [Google Scholar]
- Koparir, M.; Orek, C.; Parlak, A.E.; Söylemez, A.; Koparir, P.; Karatepe, M.; Dastan, S.D. Synthesis and biological activities of some novel aminomethyl derivatives of 4-substituted-5-(2-thienyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Eur. J. Med. Chem. 2013, 63, 340–346. [Google Scholar] [CrossRef]
- Tarawneh, A.H.; Al-Momani, L.A.; León, F.; Jain, S.K.; Gadetskaya, A.V.; Abu-Orabi, S.T.; Tekwani, B.L.; Cutler, S.L. Evaluation of triazole and isoxazole derivatives as potential anti-infective agents. Med. Chem. Res. 2018, 27, 1269–1275. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Kumari, P.; Kalal, B.L. Exploration of antimicrobial and antioxidant potential of newly synthesized 2, 3-disubstituted quinazoline-4(3H)-ones. Bioorg. Med. Chem. Lett. 2011, 21, 4353–4357. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Alhadi, A.A.; Khaledi, H.; Ng, S.W.; Ariffin, A. Butylated hydroxytoluene analogs: Synthesis and evaluation of their multipotent antioxidant activities. Molecules 2012, 17, 7645–7665. [Google Scholar] [CrossRef] [Green Version]
- Brewster, R.Q.; VanderWerf, C.A.; McEwen, W.E. Unitized Experiments in Organic Chemistry; Van Nostrand: New York, NY, USA, 1977; Volume 577. [Google Scholar]
- Grundmann, C.; Dean, J.M. Nitrile Oxides. V. Stable aromatic nitrile oxides1, 2. J. Org. Chem. 1965, 30, 2809–2812. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Allahham, F.E.; Obeidat, S.M.; Al-Jaber, H.I.; Lahham, J.N.; Abu Orabi, S.T. In vitro antioxidant activities, total phenolics and total flavonoids of the different extracts of Capparis spinosa L. and capparis decidua Edgew (forssk.) from Jordan. Int. J. Pharm. Res. 2020, 12, 1226–1236. [Google Scholar]
- Al-Qudah, M. Antioxidant acitvity and chemical composition of essential oils of fresh and air-dried Jordanian nepeta curviflora boiss. J. Biol. Act. Prod. Nat. 2016, 6, 101–111. [Google Scholar]
- Al-Qudah, M.A.; Saleh, A.M.; Alhawsawi, N.L.; Al-Jaber, H.I.; Rizvi, S.A.; Afifi, F.U. Composition, antioxidant and anticancer activities of the essential oil from fresh and air-dried aerial parts of Pallenis spinosa. Chem. Biodivers. 2017, 14, e1700146. [Google Scholar] [CrossRef] [PubMed]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Bacterial Species | 9 | 10a | 10b | 10c |
---|---|---|---|---|
Gram-positive bacteria | ||||
Micrococcus luteus (ATCC 9341)) | + | - | - | - |
Staphylococcus aureus (ATCC 29213) | + | - | - | - |
Bacillus cereus (ATCC 11778) | + | - | - | - |
Gram-negative bacteria | ||||
Serratia marcescens (ATCC 27117) | + | - | - | - |
Pseudomonas aeruginosa (ATCC 27853) | - | - | - | - |
Salmonella typhi (ATCC 6539) | - | - | - | - |
Compound | DPPH IC50 (mg/mL) | ABTS IC50 (mg/mL) |
---|---|---|
9 | 0.07 ± 4.7 × 10−3 | 0.06 ± 5.7 × 10−3 |
10a | 0.20 ± 3.0 × 10−3 | 0.12 ± 7.1 × 10−3 |
10b | 0.17 ± 8.3 × 10−2 | 0.10 ± 1.0 × 10−2 |
10c | 0.09 ± 1.9 × 10−3 | 0.08 ± 5.0 × 10−3 |
α-Tocopherol | 2.3 × 10−3 ± 1.7 × 10−5 | 1.8 × 10−3 ± 4.7 × 10−6 |
Ascorbic acid | 1.7 × 10−3 ± 2.3 × 10−6 | 1.6 × 10−3 ± 4.7 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshamari, A.; Al-Qudah, M.; Hamadeh, F.; Al-Momani, L.; Abu-Orabi, S. Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives. Molecules 2020, 25, 4271. https://doi.org/10.3390/molecules25184271
Alshamari A, Al-Qudah M, Hamadeh F, Al-Momani L, Abu-Orabi S. Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives. Molecules. 2020; 25(18):4271. https://doi.org/10.3390/molecules25184271
Chicago/Turabian StyleAlshamari, Asma, Mahmoud Al-Qudah, Fedaa Hamadeh, Lo’ay Al-Momani, and Sultan Abu-Orabi. 2020. "Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives" Molecules 25, no. 18: 4271. https://doi.org/10.3390/molecules25184271
APA StyleAlshamari, A., Al-Qudah, M., Hamadeh, F., Al-Momani, L., & Abu-Orabi, S. (2020). Synthesis, Antimicrobial and Antioxidant Activities of 2-Isoxazoline Derivatives. Molecules, 25(18), 4271. https://doi.org/10.3390/molecules25184271