Inhibitory Activity of Quercetin 3-O-Arabinofuranoside and 2-Oxopomolic Acid Derived from Malus domestica on Soluble Epoxide Hydrolase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation, Identification, and Enzyme Assay
2.2. Molecular Docking
2.3. Molecular Dynamics
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Materials
3.3. Extraction and Isolation
3.4. sEH Assay and Kinetic Analysis
3.5. Docking Study of sEH with Inhibitor
3.6. Molecular Dynamic Study
3.7. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Batchu, S.N.; Lee, S.B.; Samokhvalon, V.; Chaudhary, K.R.; EI-Sikhry, H.; Weldon, S.M.; Seubert, J.M. Novel soluble epoxide hydrolase inhibitor protects mitochondrial function following stress. Can. J. Physiol. Pharmacol. 2012, 90, 811–823. [Google Scholar] [CrossRef]
- Manickam, M.; Pillaiyar, T.; Boggu, P.; Venkateswararao, E.; Jalani, H.B.; Kim, N.-D.; Lee, S.K.; Jeon, J.S.; Kim, S.K.; Jung, S.-H. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase. Eur. J. Med. Chem. 2016, 117, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Imig, J.D.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Discov. 2009, 8, 794–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, J.W.; Morisseau, C.; Hammock, B.D. Epoxide hydrolases: Their roles and interactions with lipid metabolism. Prog. Lipid Res. 2005, 44, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.-T.; Wasti, B.; Xu, D.-Y.; Shen, L.; Du, J.-Q.; Zhao, S.-P. Soluble epoxide hydrolase and ischemic cardiomyopathy. Int. J. Cardiol. 2012, 155, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Pecic, S.; Zeki, A.A.; Xu, X.; Jin, G.Y.; Zhang, S.; Kodani, S.; Halim, M.; Morisseau, C.; Hammock, B.D.; Deng, S.-X. Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostag. Lipid Med. 2018, 136, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Tatsuki, M.; Matsubara, K.; Okazaki, K.; Yoshimura, M.; Kasai, S. Methyl ester generation associated with flesh browning in ‘Fuji’ apples after long storage under repressed ethylene function. Postharvest Biol. Technol. 2018, 145, 53–60. [Google Scholar] [CrossRef]
- Lin, M.-Z.; Chai, W.-M.; Chong, O.-Y.; Huang, Q.; Xu, X.-U.; Peng, Y.-Y. Antityrosinases mechanism of omeprazole and its application on the preservation of fresh-cut Fuji apple. Int. J. Biol. Macromol. 2018, 117, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.P.D.; Cho, I.S.; Kim, K.T.; Yang, S.Y.; Kim, Y.H.; Kang, J.S. Evaluation of phenolic compounds from viroid-free and viroid-infected apples using HPLC-PDA-ESI-MS/MS. Phytochem. Anal. 2019, 30, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-fortuny, R.; Elez-Martínez, P. Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. J. Funct. Foods 2019, 59, 206–214. [Google Scholar] [CrossRef]
- Thao, N.P.; Kim, J.H.; Luyen, B.T.T.; Dat, N.T.; Kim, Y.H. In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors. Int. J. Biol. Macromol. 2017, 98, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Thao, N.P.; Luyen, B.T.T.; Kim, J.H.; Jo, A.R.; Dat, N.T.; Kiem, P.V.; Minh, C.V.; Kim, Y.H. Identification, characterization, kinetics, and molecular docking of flavonoid constituents from Archidendron clypearia (Jack.) Nielsen leaves and twigs. Bioorg. Med. Chem. 2016, 24, 3125–3132. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Lee, S.; Jang, H.-J.; Su, X.D.; Wang, H.-S.; Kim, Y.H.; Yang, S.Y. Inhibition potential of phenolic constituents from the aerial parts of Tetrastigma hemsleyanum against soluble epoxide hydrolase and nitric oxide synthase. J. Enzym. Inhib. Med. Chem. 2019, 34, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.; Rhim, T.-J.; Choi, M.-Y.; Choi, J.S.; Kim, Y.-C.; Kim, M.-S.; Park, H.-J. Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supine. Arch. Pharm. Res. 2014, 37, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, S.; Wu, L.; Li, Y.; Feng, L.; Shen, Y.; Tian, J.; Tang, J.; Wang, N.; Liu, Y.; et al. Abiesatrines A-J: Anti-inflammatory and antitumor triterpenoids from Abies georgei Orr. Org. Biomol. Chem. 2010, 8, 2609–2616. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Zhou, W.; Oh, J.S.; Choe, S.G.; Kim, D.W.; Lee, S.H.; Na, M. Rhododendric acid A, a new ursane-type PTP1B inhibitor from the endangered plant Rhododendron brachycarpum G. Don. Bioorg. Med. Chem. Lett. 2012, 22, 6116–6119. [Google Scholar] [CrossRef] [PubMed]
- D’Abrosca, B.; Fiorentino, A.; Monaco, P.; Pacifico, S. Raidcal-scavenging activities of new hydroxylated ursane triterpenes from Annurca Apples cv. Chem. Biodivers. 2015, 2, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Bankaitis, V.A. Molecular docking: From lock and key to combination lock. J. Mol. Clin. Appl. 2017, 2, 1–9. [Google Scholar]
- Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Lu, D.; Zhang, H.; Zheng, M.; Yang, H.; Xu, Y.; Luo, C.; Zhu, W.; Yu, K.; Jiang, H. Applying high-performance computing in drug discovery and molecular simulation. Natl. Sci. Rev. 2016, 3, 49–63. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
The Inhibitory Activity on sEH | ||
---|---|---|
IC50 Value a (μM) | Binding Mode, ki (μM) | |
1 | 39.3 ± 3.4 | Mixed (39.5 ± 1.0) |
2 | 84.5 ± 9.5 | Noncompetitive (38.5 ± 3.7) |
3 | 51.3 ± 4.9 | Noncompetitive (34.6 ± 1.6) |
4 | 11.4 ± 2.7 | Noncompetitive (2.9 ± 0.8) |
AUDA b | 1.5 ± 1.2 (nM) |
Hydrogen Bonds (Å) | Binding Energy (kcal/mol) | |
---|---|---|
1 | Lys495 (2.62), Asp496 (2.56), Phe497 (2.82) | −9.03 |
4 | Ile363 (2.77), Asn366 (3.21) | −10.18 |
Time (ns) | 1 | 4 |
---|---|---|
Amino Acid (Å) | Amino Acid (Å) | |
0 | Ser407(3.03), Ser415(3.27), Leu417(3.14), Phe497(2.82), Lys495(3.06), Val416(3.26) | Ile363(3.27) |
1 | Val416(3.10), Glu414(3.12), Ser418(2.46), Met419 (3.12), Lys495(3.10), Ser415(2.94), Phe497(3.09) | Tyr343(2.88) |
2 | Val416(2.81), Ala411(2.89), Lys495(3.12), Ser418(2.45), Met419(2.79) | Ile363(3.29), Tyr343(2.74) |
3 | Val416(2.93), Met419(3.01), Ser418(3.02), Ser415(2.92), Lys495(2.96) | Thr360(2.75), Trp473(2.90), Ser374(2.61) |
4 | Glu414(2.68,2.90), Val416(2.84), Met419(3.22), Ser415(2.95), Lys495(2.76) | Ser374(2.67) |
5 | Lys495(2.80), Phe497(3.09) | Ser374(2.73) |
6 | Val416(3.31), Met419(2.72), His420(2.89), Lys495(3.13) | Tyr343(2.61), Ser374(2.65) |
7 | Glu414(2.66,3.29), Val416(3.14), Met419(2.90) | Tyr343(3.35), Ser374(2.57) |
8 | Asp413(2.97), Val416(2.81), Met419(2.93) | Tyr343(3.18), Ser374(2.59) |
9 | Val416(2.85), Ser407(3.02), Met419(2.76), Ser415(2.93) | Ser374(2.79) |
10 | Val416(2.87), His524(3.02), Lys495(3.19), Ser415(3.33), Leu417(3.10), Met419(2.80) | Ser374(2.60), Thr360(2.79) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, I.S.; Kim, J.H.; Lin, Y.; Su, X.D.; Kang, J.S.; Yang, S.Y.; Kim, Y.H. Inhibitory Activity of Quercetin 3-O-Arabinofuranoside and 2-Oxopomolic Acid Derived from Malus domestica on Soluble Epoxide Hydrolase. Molecules 2020, 25, 4352. https://doi.org/10.3390/molecules25184352
Cho IS, Kim JH, Lin Y, Su XD, Kang JS, Yang SY, Kim YH. Inhibitory Activity of Quercetin 3-O-Arabinofuranoside and 2-Oxopomolic Acid Derived from Malus domestica on Soluble Epoxide Hydrolase. Molecules. 2020; 25(18):4352. https://doi.org/10.3390/molecules25184352
Chicago/Turabian StyleCho, In Sook, Jang Hoon Kim, Yunjia Lin, Xiang Dong Su, Jong Seong Kang, Seo Young Yang, and Young Ho Kim. 2020. "Inhibitory Activity of Quercetin 3-O-Arabinofuranoside and 2-Oxopomolic Acid Derived from Malus domestica on Soluble Epoxide Hydrolase" Molecules 25, no. 18: 4352. https://doi.org/10.3390/molecules25184352
APA StyleCho, I. S., Kim, J. H., Lin, Y., Su, X. D., Kang, J. S., Yang, S. Y., & Kim, Y. H. (2020). Inhibitory Activity of Quercetin 3-O-Arabinofuranoside and 2-Oxopomolic Acid Derived from Malus domestica on Soluble Epoxide Hydrolase. Molecules, 25(18), 4352. https://doi.org/10.3390/molecules25184352