N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples
3.2. Sample Preparation by Using Plant-Based Substances Directly
3.3. Sample Preparation by Using Plant-Based Substance Extracts
3.4. Thermal Degradation
3.5. Spectroscopy Measurements and Data Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferreira, M.M.C. Quimiometria—Conceitos, Métodos e Aplicações, 1st ed.; Editora Unicamp: Campinas-SP, Brazil, 2015; pp. 15–27. [Google Scholar]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L. Computerized learning machines applied to chemical problems. Molecular formula determination from low resolution mass spectrometry. Anal. Chem. 1969, 41, 21–27. [Google Scholar] [CrossRef]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. An investigation of convergence rate and predictive ability of adaptive binary pattern classification. Anal. Chem. 1969, 41, 690–695. [Google Scholar] [CrossRef]
- Kowalski, B.R.; Jurs, P.C.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. Multicategory pattern classification by least squares. Anal. Chem. 1969, 41, 695–700. [Google Scholar] [CrossRef]
- Jurs, P.C.; Kowalski, B.R.; Isenhour, T.L.; Reilly, C.N. Computerized learning machines applied to chemical problems. An investigation of combined patterns from diverse analytical data using computerized learning machine. Anal. Chem. 1969, 41, 1949–1953. [Google Scholar] [CrossRef]
- Booksh, K.S.; Kowalski, B.R. Theory of analytical chemistry. Anal. Chem. 1994, 66, 782A–791A. [Google Scholar] [CrossRef]
- Brereton, R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125, 2125–2154. [Google Scholar] [CrossRef]
- Brereton, R.G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.M.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry—part I: History, experimental design and data analysis tools. Anal. Bioanal. Chem. 2017, 409, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sarma, A.B.G.S.; Rawal, R.K. Chemometrics tools used in analytical chemistry: An overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Q.; Xiao, N.; Wen, Y.; He, S.-H.; Xu, Y.-D.; Lin, Y.-W.; Li, H.-D.; Xu, Q.-S. Collaboration patterns and network in chemometrics. Chemom. Intell. Lab. Syst. 2019, 191, 21–29. [Google Scholar] [CrossRef]
- Marini, F. Chemometrics in Food Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ruisánchez, I.; Jiménez-Carvelo, A.M.; Callao, M.P. ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta 2020, in press. [Google Scholar]
- Gonçalves, R.P.; Março, P.H.; Valderrama, P. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics. Food Chem. 2014, 163, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.K.; Musso, M.; Bertoldo Menezes, D. Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil. Food Chem. 2020, in press. [Google Scholar]
- Malacrida, C.R.; Angelo, P.M.; Andreo, D.; Jorge, N. Chemical composition and antioxidant potential of yellow melon seed extracts in soybean oil. Revista Ciência Agronômica 2007, 38, 372–376. [Google Scholar]
- Angelo, P.M.; Jorge, N. Evaluation of added sunflower oil of antioxidants under storage. Food Sci. Technol. 2008, 28, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.M.; Chang, S.K.; Sia, W.C.M.; Yim, H.S. Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 2015, 12, 18–25. [Google Scholar] [CrossRef]
- Boroski, M.; Aguiar, A.C.; Rotta, E.M.; Bonafé, E.G.; Valderrama, P.; Souza, N.E.; Visentainer, J.V. Antioxidant activity of herbs and extracted phenolics from oregano in canola oil. Int. Food Res. J. 2018, 25, 2444–2452. [Google Scholar]
- Pedro, A.C.; Maurer, J.B.B.; Zawadzki-Baggio, S.F.; Ávila, S.; Maciel, G.M.; Haminiuk, C.W.I. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind. Crops Prod. 2018, 112, 90–97. [Google Scholar] [CrossRef]
- Sekhon-Loodu, S.; Warnakulasuriya, S.N.; Rupasinghe, H.P.V.; Shahidi, F. Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation. Food Chem. 2013, 140, 189–196. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Curr. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- Badaró, A.T.; Pasquini, C.; Barbin, D.F. Food quality and NIR spectroscopy in the omics era. In Reference Module in Food Science; Smithers, G., Trinetta, V., Knoerzer, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pop, A.; Petrut, G.S.; Muste, S.; Paucean, A.; Salanta, L.C.; Farcas, A.; Man, S. Herbs and spices as important source of antioxidant and phenolic content in black radish dressing. Hop Med. Plants 2017, 1–2, 87–93. [Google Scholar]
- Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhe, R. Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant potential of the extracts, fractions and oils derived from oilseeds. Antioxidants 2013, 2, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, L.N.; Coqueiro, A.; Março, P.H.; Valderrama, P. Thermal rice oil degradation evaluated by UV–Vis-NIR and PARAFAC. Food Chem. 2019, 273, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, V.C.; Jorge, N. Antioxidants used in oils, fats and fatty foods. Quim. Nova 2006, 29, 755–760. [Google Scholar]
- Valderrama, P.; Março, P.H.; Locquet, N.; Ammari, F.; Rutledge, D.N. A procedure to facilitate the choice of the number of factors in multi-way data analysis applied to the natural samples: Application to monitoring the thermal degradation of oils using front-face fluorescence spectroscopy. Chemom. Intell. Lab. Syst. 2011, 106, 166172. [Google Scholar] [CrossRef]
- Ammari, F.; Jouan-Rimbaud-Bouveresse, D.; Eveleigh, L.; Boughanmi, D.; Rutledge, D.N. Independent component analysis applied to mid-infrared spectra of edible oils to study the thermal stability of heated oils. J. Food Meas.Charact. 2013, 7, 90–99. [Google Scholar] [CrossRef]
- Patel, S. Pumpkin (Cucurbita sp.) seeds as nutraceutic: A review on status quo and scopes. Mediterr. J. Nutr. Metab. 2013, 6, 183–189. [Google Scholar] [CrossRef]
- Kirkan, B.; Ozer, M.S.; Sarikurkcu, C.; Copuroglu, M.; Cengiz, M.; Tepe, B. Can the stalks of Papaver somniferum L. be an alternative source of bioactive components? Ind. Crops Prod. 2018, 115, 1–5. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Spencer, J.P.E.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviral action of extracts of rosemary and provençal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Canha, N.; Felizardo, P.; Menezes, J.C.; Correia, M.J.N. Multivariate near infrared spectroscopy models for predicting the oxidative stability of biodiesel: Effect of antioxidants addition. Fuel 2012, 97, 352–357. [Google Scholar] [CrossRef]
- Vieira, F.S.; Pasquini, C. Near infrared emission photometer for measuring the oxidative stability of edible oils. Anal. Chim. Acta 2013, 796, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.S.; Pasquini, C. Determination of the oxidative stability of biodiesel using near infrared emission spectroscopy. Fuel 2014, 117, 1004–1009. [Google Scholar] [CrossRef]
- Ammari, F.; Jouan-Rimbaud-Bouveresse, D.; Boughanmi, D.; Rutledge, D.N. Study of the heat stability of sunflower oil enriched in natural antioxidants by different analytical techniques and front-face fluorescence spectroscopy combined with independent component analysis. Talanta 2012, 99, 323–329. [Google Scholar] [CrossRef] [PubMed]
- ABIOVE—Associação Brasileira das Indústrias de Óleos Vegetais. Available online: https://abiove.org.br/estatisticas/ (accessed on 12 September 2020).
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares producers. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC, Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Bro, R.; Viereck, N.; Toft, M.; Toft, H.; Hansen, P.I.; Engelsen, S.B. Mathematical chromatography solves the cocktail party effect in mixtures using 2D spectra and PARAFAC. TrAC Trends Anal. Chem. 2010, 29, 281–284. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A new efficient method for determining the number of components in PARAFAC models. J. Chemom. 2003, 17, 274–286. [Google Scholar] [CrossRef]
- Vieira, T.M.F.S.; D’Arce, M.A.B.R. Stability of oils heated by microwave: UV spectrophotometric evaluation. Food Sci. Technol. 1998, 18, 433–437. [Google Scholar] [CrossRef]
- Gonçalves, T.R.; Rosa, L.N.; Gonçalves, R.P.; Torquato, A.S.; Março, P.H.; Gomes, S.T.M.; Matsushita, M.; Valderrama, P. Monitoring the Oxidative Stability of Monovarietal Extra Virgin Olive Oils by UV–Vis Spectroscopy and MCR–ALS. Food Anal. Methods 2018, 11, 1936–1943. [Google Scholar] [CrossRef]
- Holman, R.; Nickell, C.; Privett, O.; Edmondson, P. Detection and measurement of hydroperoxides by near-infrared spectrophotometry. J. Am. Oil Chem. Soc. 1958, 35, 422–425. [Google Scholar] [CrossRef]
- Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and mid-infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem. 2015, 187, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.N.; Figueiredo, L.C.; Bonafé, E.G.; Coqueiro, A.; Visentainer, J.V.; Março, P.H.; Rutledge, D.N.; Valderrama, P. Multi-block data analysis using ComDim for the evaluation of complex samples: Characterization of edible oils. Anal. Chim. Acta 2017, 961, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Guinazi, M.; Milagres, R.C.R.M.; Pinheiro-Sant’Ana, M.; Chaves, J.B.P. Tocopherols and tocotrienols in vegetable oils and eggs. Quim. Nova 2009, 32, 2098–2103. [Google Scholar]
- Ardabili, A.G.; Farhoosh, R.; Khodaparast, M.H.H. Frying stability of canola oil in presence of pumpkin seed and olive oils. Eur. J. Lipid Sci. Technol. 2010, 112, 871–877. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Barreto, G.P.M.; Bragagnolo, N.; Mercadante, A.Z. Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil. Braz. Arch. Biol. Technol. 2008, 51, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.R.; Gonçalves, R.P.; Valderrama, P.; Março, P.H. MCR-ALS and NIRS application in the evaluation of the antioxidant activity of Peruvian Maca (Lepidium Meyenii Walp). Braz. J. Food Res. 2016, 7, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Laczkowski, M.S.; Gonçalves, T.R.; Gomes, S.T.M.; Março, P.H.; Valderrama, P.; Matsushita, M. Application of chemometric methods in the evaluation of antioxidants activity from degreased chia seeds extracts. LWT, Food Sci. Technol. 2018, 95, 303–307. [Google Scholar] [CrossRef]
- Anderson, C.A.; Bro, R. The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Vilas-Boas, A.; Valderrama, P.; Fontes, N.; Geraldo, D.; Bento, F. Evaluation of total polyphenol content of wines by means of voltammetric techniques: Cyclic voltammetry vs differential pulse voltammetry. Food Chem. 2019, 276, 719–725. [Google Scholar] [CrossRef]
Sample Availability: NIR spectra are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, L.N.; Gonçalves, T.R.; Gomes, S.T.M.; Matsushita, M.; Gonçalves, R.P.; Março, P.H.; Valderrama, P. N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules 2020, 25, 4366. https://doi.org/10.3390/molecules25194366
Rosa LN, Gonçalves TR, Gomes STM, Matsushita M, Gonçalves RP, Março PH, Valderrama P. N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules. 2020; 25(19):4366. https://doi.org/10.3390/molecules25194366
Chicago/Turabian StyleRosa, Larissa Naida, Thays Raphaela Gonçalves, Sandra T. M. Gomes, Makoto Matsushita, Rhayanna Priscila Gonçalves, Paulo Henrique Março, and Patrícia Valderrama. 2020. "N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil" Molecules 25, no. 19: 4366. https://doi.org/10.3390/molecules25194366
APA StyleRosa, L. N., Gonçalves, T. R., Gomes, S. T. M., Matsushita, M., Gonçalves, R. P., Março, P. H., & Valderrama, P. (2020). N-Way NIR Data Treatment through PARAFAC in the Evaluation of Protective Effect of Antioxidants in Soybean Oil. Molecules, 25(19), 4366. https://doi.org/10.3390/molecules25194366