A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Description
2.2. Characterization and Activation
2.3. Adsorption Measurements
3. Materials and Methods
3.1. Reagents
3.2. Instruments
3.3. X-ray Crystallography
3.4. Synthetic Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A. Crystallographic data
Identification Code | 1se |
---|---|
CCDC Number | 2026693 |
Empirical formula | C30H44N6O12Se2Zn2 |
M, g/mol | 969.37 |
Crystal system | Tetragonal |
Space group | P−421c |
a, b, Å | 20.59224(17) |
c, Å | 19.1260(2) |
V, Å3 | 8110.20(16) |
Z | 8 |
D(calc.), g/cm3 | 1.588 |
μ, mm−1 | 3.040 |
F(000) | 3920 |
Crystal size, mm | 0.36 × 0.26 × 0.20 |
θ range for data collection, deg. | 1.98–28.28 |
Index ranges | −27 ≤ h ≤ 19, −22 ≤ k ≤ 25, −22 ≤ l ≤ 25 |
Reflections collected/independent | 24,964 8741 |
Rint | 0.0225 |
Reflections with I > 2σ(I) | 8293 |
Goodness-of-fit on F2 | 1.044 |
Final R indices [I > 2σ(I)] | R1 = 0.0223, wR2 = 0.0492 |
R indices (all data) | R1 = 0.0253, wR2 = 0.0502 |
Largest diff. peak/hole, e/Å3 | 0.397/−0.271 |
Identification Code | 1se′ |
---|---|
Crystal System | Tetragonal |
a, b, Å | 21.1165 |
c, Å | 19.1304 |
V, Å3 | 8530.5 |
D(calc.), g/cm3 | 1.055 |
References
- Dutcher, B.; Fan, M.; Russell, A.G. Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review. ACS Appl. Mater. Interfaces 2015, 7, 2137–2148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O’Hareb, D.; Zhong, Z. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 2014, 7, 3478–3518. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Miller, D.C. Post-combustion CO2 capture technologies—A review of processes for solvent-based and sorbent-based CO2 capture. Curr. Opin. Chem. Eng. 2017, 17, 78–92. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Mercedes Maroto-Valer, M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.B.; Li, L.; Alsalme, A.; Chen, B. An Ultramicroporous Metal-Organic Framework for Sieving Separation of Carbon Dioxide from Methane. Small Struct. 2020. [Google Scholar] [CrossRef]
- Ding, M.; Flaig, R.W.; Jiang, H.-L.; Yaghi, O.M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, Z.-Z.; Xiang, S.; Chen, B. Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ. Sci. 2014, 7, 2868–2899. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Milner, P.J.; Forse, A.C.; Lee, J.-H.; Colwell, K.A.; Neaton, J.B.; Reimer, J.A.; Weston, S.C.; Long, J.R. Water Enables Efficient CO2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal–Organic Framework. J. Am. Chem. Soc. 2019, 141, 13171–13186. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater. 2017, 7, 1601296. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J. 2016, 296, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Dutta, P.; Wong-Foy, A.G.; Gidley, D.W.; Matzger, A.J. Water Sensitivity in Zn4O-Based MOFs is Structure and History Dependent. J. Am. Chem. Soc. 2015, 137, 2651–2657. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-F.; Liu, B.; Hou, L.; Zhang, W.-Y.; Wang, Y.-Y. Rational construction of a stable Zn4O-based MOF for highly efficient CO2 capture and conversion. Chem. Commun. 2018, 54, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 2004, 10, 1373–1382. [Google Scholar] [CrossRef]
- Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; Kaskel, S. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate). Microporous Mesoporous Mater. 2009, 122, 93–98. [Google Scholar] [CrossRef]
- Rabe, T.; Pewe, H.; Reinsch, H.; Willhammar, T.; Svensson Grape, E.; Stock, N. Influence of the substitution pattern of four naphthalenedicarboxylic acids on the structures and properties of group 13 metal-organic frameworks and coordination polymers. Dalton Trans. 2020, 49, 4861–4868. [Google Scholar] [CrossRef] [PubMed]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Lammert, M.; Wharmby, M.; Smolders, S.; Bueken, B.; Lieb, A.; Lomachenko, K.A.; De Vos, D.; Stock, N. Cerium-based metal organic frameworks with UiO-66 architecture: Synthesis, properties and redox catalytic activity. Chem. Commun. 2015, 51, 12578–12581. [Google Scholar] [CrossRef] [Green Version]
- Waitschat, S.; Fröhlich, D.; Reinsch, H.; Terraschke, H.; Lomachenko, K.A.; Lamberti, C.; Kummer, H.; Helling, T.; Baumgartner, M.; Henninger, S.; et al. Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: Defect chemistry, framework hydrophilisation and sorption properties. Dalton Trans. 2018, 47, 1062–1070. [Google Scholar] [CrossRef]
- Wang, H.; Wen, R.-M.; Hu, T.-L. Two Series of Lanthanide Metal-Organic Frameworks Constructed from Crown-Ether-Like Secondary Building Units. Eur. J. Inorg. Chem. 2014, 2014, 1185–1191. [Google Scholar] [CrossRef]
- Sapchenko, S.A.; Demakov, P.A.; Samsonenko, D.G.; Dybtsev, D.N.; Schröder, M.; Fedin, V.P. A Cryptand Metal–Organic Framework as a Platform for the Selective Uptake and Detection of Group I Metal Cations. Chem. Eur. J. 2017, 23, 2286–2289. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Feng, F.; Li, S.; Li, X.-X.; Shu, L. Metal-organic framework DUT-67 (Zr) for adsorptive removal of trace Hg2+ and CH3Hg+ in water. Chem. Speciat. Bioavailab. 2018, 30, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Guo, P.-C.; Zhao, S.-P.; Liu, J.-L.; Ren, X.-M. A rhombus channel metal–organic framework comprised of Sr2+ and thiophene-2,5-dicarboxylic acid exhibiting novel dielectric bistability. CrystEngComm 2013, 15, 1264–1270. [Google Scholar] [CrossRef]
- Dreischarf, A.C.; Lammert, M.; Stock, N.; Reinsch, H. Green Synthesis of Zr-CAU-28: Structure and Properties of the First Zr-MOF Based on 2,5-Furandicarboxylic Acid. Inorg. Chem. 2017, 56, 2270–2277. [Google Scholar] [CrossRef]
- Lysova, A.A.; Samsonenko, D.G.; Dorovatovskii, P.V.; Lazarenko, V.A.; Khrustalev, V.N.; Kovalenko, K.A.; Dybtsev, D.N.; Fedin, V.P. Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal–Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. J. Am. Chem. Soc. 2019, 141, 17260–17269. [Google Scholar] [CrossRef]
- Petkov, P.S.; Bon, V.; Hobday, C.L.; Kuc, A.B.; Melix, P.; Kaskel, S.; Düren, T.; Heine, T. Conformational isomerism controls collective flexibility in metal–organic framework DUT-8(Ni). Phys. Chem. Chem. Phys. 2019, 21, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Dybtsev, D.N.; Kim, H.; Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem. Eur. J. 2005, 11, 3521–3529. [Google Scholar] [CrossRef]
- Dybtsev, D.N.; Yutkin, M.P.; Peresypkina, E.V.; Virovets, A.V.; Serre, C.; Férey, G.; Fedin, V.P. Isoreticular homochiral porous metal-organic structures with tunable pore sizes. Inorg. Chem. 2007, 46, 6843–6845. [Google Scholar] [CrossRef]
- Khan, I.S.; Samsonenko, D.G.; Irgashev, R.A.; Kazin, N.A.; Rusinov, G.L.; Charushin, V.N.; Zavakhina, M.S.; Fedin, V.P. Synthesis, crystal structure and fluorescent properties of indolo[3,2-b]carbazole-based metal–organic coordination polymers. Polyhedron 2017, 141, 337–342. [Google Scholar] [CrossRef]
- Cheplakova, A.M.; Kovalenko, K.A.; Samsonenko, D.G.; Lazarenko, V.A.; Khrustalev, V.N.; Vinogradov, A.S.; Karpov, V.M.; Platonov, V.E.; Fedin, V.P. Metal-organic frameworks based on octafluorobiphenyl-4,4′-dicarboxylate: Synthesis, crystal structure, and surface functionality. Dalton Trans. 2018, 47, 3283–3297. [Google Scholar] [CrossRef]
- Bolotov, V.A.; Kovalenko, K.A.; Samsonenko, D.G.; Han, X.; Zhang, X.; Smith, G.L.; McCormick, L.J.; Teat, S.J.; Yang, S.; Lennox, M.J.; et al. Enhancement of CO2 Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. Inorg. Chem. 2018, 57, 5074–5082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, C.; D’Alessandro, D.M. Systematic Tuning of Zn(II) frameworks with Furan, Thiophene and Selenophene Dipyridyl and Dicarboxylate Ligands. Cryst. Growth Des. 2017, 17, 6262–6272. [Google Scholar] [CrossRef]
- Ding, B.; Hua, C.; Kepert, C.J.; D’Alessandro, D.M. Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units. Chem. Sci. 2019, 10, 1392–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lysova, A.; Samsonenko, D.; Dybtsev, D.; Fedin, V. Synthesis and luminescence properties of new metal-organic frameworks based on zinc(II) ions and 2,5-thiophendicarboxylate ligands. Crystals 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Dybtsev, D.N.; Chun, H.; Kim, K. Rigid and Flexible: A Highly Porous Metal–Organic Framework with Unusual Guest-Dependent Dynamic Behavior. Angew. Chem. Int. Ed. 2004, 43, 5033–5036. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL–A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Antonio Zárate, J.; Sánchez-González, E.; Jurado-Vázquez, T.; Gutiérrez-Alejandre, A.; González-Zamora, E.; Castillo, I.; Maurin, G.; Ibarra, I.A. Outstanding reversible H2S capture by an Al(III)-based MOF. Chem. Commun. 2019, 55, 3049–3052. [Google Scholar] [CrossRef]
- Georgiadis, A.G.; Charisiou, N.; Yentekakis, I.V.; Goula, M.A. Hydrogen Sulfide (H2S) Removal via MOFs. Materials 2020, 13, 3640. [Google Scholar] [CrossRef]
- Dong, Q.; Guo, Y.; Cao, H.; Wang, S.; Matsuda, R.; Duan, J. Accelerated C2H2/CO2 Separation by a Se-Functionalized Porous Coordination Polymer with Low Binding Energy. ACS Appl. Mater. Interfaces 2020, 12, 3764–3772. [Google Scholar] [CrossRef]
- Díaz-Ramírez, M.L.; Vargas, B.; Raziel Álvarez, J.; Landeros-Rivera, B.; Rivera-Almazo, M.; Ramos, C.; Flores, G.; Morales, E.; Vargas, R.; Garza, J.; et al. Fluorometric detection of iodine by MIL-53(Al)-TDC. Dalton Trans. 2020, 49, 6572–6577. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Yim, H.; Ko, N.; Choi, S.B.; Oh, Y.; Park, H.J.; Park, S.Y.; Kim, J. Gas adsorption properties of highly porous metal–organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Trans. 2014, 43, 18017–18024. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Wang, D.; Cao, Y.; Li, G.; Huo, Q.; Liu, Y. Two stable 3D porous metal–organic frameworks with high performance for gas adsorption and separation. J. Mater. Chem. A 2015, 3, 16627–16632. [Google Scholar] [CrossRef]
- Ding, Q.-R.; Wang, F. A pillared-layer framework with high uptake and selective sorption of light hydrocarbons. Dalton Trans. 2016, 45, 7004–7007. [Google Scholar] [CrossRef]
- Lin, R.B.; Xiang, S.; Zhou, W.; Chen, B. Microporous Metal-Organic Framework Materials for Gas Separation. Chem 2020, 6, 337–363. [Google Scholar] [CrossRef]
- Sapchenko, S.A.; Barsukova, M.O.; Belosludov, R.V.; Kovalenko, K.A.; Samsonenko, D.G.; Poryvaev, A.S.; Sheveleva, A.M.; Fedin, M.V.; Bogomyakov, A.S.; Dybtsev, D.N.; et al. Understanding Hysteresis in Carbon Dioxide Sorption in Porous Metal–Organic Frameworks. Inorg. Chem. 2019, 58, 6811–6820. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro 1.171.38.46; Rigaku Oxford Diffraction: The Woodlands, TX, USA, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Pishchur, D.P.; Kompankov, N.B.; Lysova, A.A.; Kozlova, S.G. Order-disorder phase transitions in Zn2(C8H4O4)2·C6H12N2 in atmospheres of noble gases. J. Chem. Thermodyn. 2019, 130, 147–153. [Google Scholar] [CrossRef]
V1/V2 (273 K, 1 Bar) | Kh1/Kh2 (273 K) | IAST (273 K, 50:50 Ratio) | |||||||
---|---|---|---|---|---|---|---|---|---|
Gas Mixture | 1se | 1t | 1b | 1se | 1t | 1b | 1se | 1t | 1b |
CO2/N2 (in this work) | 18.6 | -- | 17.7 | 12.9 | -- | 11.8 | 15.1 | -- | 11.9 |
CO2/N2 (from Ref. [29]) | -- | 10.3 | 18.8 | -- | 12.5 | 8.9 | -- | 11.2 | 9.2 |
CO2/CH4 (in this work) | 6.8 | -- | 5.8 | 4.8 | -- | 3.9 | 5.6 | -- | 4.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demakov, P.A.; Volynkin, S.S.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules 2020, 25, 4396. https://doi.org/10.3390/molecules25194396
Demakov PA, Volynkin SS, Samsonenko DG, Fedin VP, Dybtsev DN. A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules. 2020; 25(19):4396. https://doi.org/10.3390/molecules25194396
Chicago/Turabian StyleDemakov, Pavel A., Sergey S. Volynkin, Denis G. Samsonenko, Vladimir P. Fedin, and Danil N. Dybtsev. 2020. "A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity" Molecules 25, no. 19: 4396. https://doi.org/10.3390/molecules25194396
APA StyleDemakov, P. A., Volynkin, S. S., Samsonenko, D. G., Fedin, V. P., & Dybtsev, D. N. (2020). A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules, 25(19), 4396. https://doi.org/10.3390/molecules25194396