Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC×GC-TOFMS Separation and Identification of Volatile Components in HAB
2.2. Comparison of Pretreatment Methods
2.3. Volatile Components in HAB
2.3.1. Skeleton Components
2.3.2. Terpenes
2.3.3. Sulfides
2.3.4. Cyclic Components
2.3.5. Nitrogenous Components
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Sample Extraction Methods
3.2.1. HS-SPME
3.2.2. SPE
3.2.3. SBSE
3.3. GC×GC-TOFMS Instrumentation
3.4. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.L.; Sun, B.G. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425. [Google Scholar] [CrossRef] [PubMed]
- Analysis of National Baijiu Production and Growth from January to December 2019. Available online: https://bg.qianzhan.com/report/detail/459/200207-e8183426.html (accessed on 31 December 2019).
- Jin, G.Y.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Wu, J.H.; Zheng, Y.; Sun, B.G.; Sun, X.T.; Sun, J.Y.; Zheng, F.P.; Huang, M.Q. The Occurrence of Propyl Lactate in Chinese Baijius (Chinese Liquors) Detected by Direct Injection Coupled with Gas Chromatography-Mass Spectrometry. Molecules 2015, 20, 19002–19013. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.W.; Han, B.Z. Baijiu, Chinese liquor: History, classification and manufacture. J. Ethnic Foods 2016, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.L.; Xu, Y.; Qian, M.C. Identification of aroma compounds in Chinese “Moutai” and “Langjiu” liquors by normal phase liquid chromatography fractionation followed by gas chromatography/olfactometry. In Flavor Chemistry of Wine and Other Alcoholic Beverages; ACS Publications: Washington, WA, USA, 2012; pp. 303–338. [Google Scholar]
- Fan, W.L.; Qian, M.C. Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef]
- Weldegergis, B.T.; de Villiers, A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). Food Chem. 2011, 129, 188–199. [Google Scholar] [CrossRef]
- Amaral, M.S.S.; Marriott, P.J. The Blossoming of Technology for the Analysis of Complex Aroma Bouquets—A Review on Flavour and Odorant Multidimensional and Comprehensive Gas Chromatography Applications. Molecules 2019, 24, 2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, M.S.S.; Nolvachai, Y.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal. Chem. 2020, 92, 85–104. [Google Scholar] [CrossRef]
- Frysinger, G.S.; Gaines, R.B. Separation and identification of petroleum biomarkers by comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2001, 24, 87–96. [Google Scholar] [CrossRef]
- Focant, J.F.; Sjodin, A.; Patterson, D.G. Improved separation of the 209 polychlorinated biphenyl congeners using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 2004, 1040, 227–238. [Google Scholar] [CrossRef]
- Marriott, P.J.; Shellie, R.; Fergeus, J.; Ong, R.; Morrison, P. High resolution essential oil analysis by using comprehensive gas chromatographic methodology. Flavour Fragr. J. 2000, 15, 225–239. [Google Scholar] [CrossRef]
- Robinson, A.L.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 504–517. [Google Scholar] [CrossRef] [PubMed]
- He, Y.X.; Liu, Z.P.; Qian, M.C.; Yu, X.W.; Xu, Y.; Chen, S. Unraveling the chemosensory characteristics of strong-aroma type Baijiu from different regions using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry and descriptive sensory analysis. Food Chem. 2020, 331, 127335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zeng, Z.D.; Zhao, C.X.; Kong, H.W.; Lu, X.; Xu, G.W. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis. J. Chromatogr. A. 2013, 1313, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Pulgati, F.H.; Zini, C.A. Main differences between volatiles of sparkling and base wines accessed through comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection and chemometric tools. Food Chem. 2014, 164, 427–437. [Google Scholar] [CrossRef]
- Stilo, F.; Tredici, G.; Bicchi, C.; Robbat, A.J.; Morimoto, J.; Cordero, C. Climate and Processing Effects on Tea (Camellia sinensis L. Kuntze) Metabolome: Accurate Profiling and Fingerprinting by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry. Molecules 2020, 25, 2447. [Google Scholar] [CrossRef]
- Cordero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Schieberle, P.; Reichenbach, S.E.; Tao, Q. Profiling food volatiles by comprehensive two-dimensional ga schromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different orig. J. Chromatogr. A 2010, 1217, 5848–5858. [Google Scholar] [CrossRef]
- Gracka, A.; Jeleń, H.H.; Majcher, M.; Siger, A.; Kaczmarek, A. Flavoromics approach in monitoring changes in volatile compoundsof virgin rapeseed oil caused by seed roasting. J. Chromatogr. A 2016, 1428, 292–304. [Google Scholar] [CrossRef]
- Tranchida, P.Q.; Maimone, M.; Purcaro, G.; Dugo, P.; Mondello, L. The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography. Trac-Trends Anal Chem. 2015, 71, 74–84. [Google Scholar] [CrossRef]
- Schurek, J.; Portoles, T.; Hajslova, J.; Riddellova, K.; Hernandez, F. Application of head-space solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of multiple pesticide residues in tea samples. Anal. Chim. Acta 2008, 611, 163–172. [Google Scholar] [CrossRef]
- Purcaro, G.; Tranchida, P.Q.; Conte, L.; Obiedzinska, A.; Dugo, P.; Dugo, G.; Mondello, L. Performance evaluation of a rapid-scanning quadrupole mass spectrometer in the comprehensive two-dimensional gas chromatography analysis of pesticides in water. J. Sep. Sci. 2011, 34, 2411–2417. [Google Scholar] [CrossRef] [PubMed]
- Weldegergis, B.T.; Crouch, A.M.; Gorecki, T.; de Villiers, A. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines. Anal. Chim. Acta. 2011, 701, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.K.; Lu, X.; Ji, K.H.; Guo, K.F.; Li, Y.L.; Wu, C.Y.; Xu, G.W. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta. 2007, 597, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Yi, B.; Shen, C.; Tao, F.; Liu, Y.; Lin, Z.; Xu, P. Chemical analysis of the Chinese liquor Luzhoulaojiao by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Sci. Rep. 2015, 5, 9553. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.L.; Hu, G.Y.; Yan, X.U.; Jia, Q.Y.; Ran, X.H. Analysis of Aroma Components in Chinese Herbaceous Aroma Type Liquor. J. Food Sci. Biotechnol. 2012, 31, 8. [Google Scholar]
- Fan, W.L.; Hu, G.Y.; Xu, Y. Quantification of Volatile Terpenoids in Chinese Medicinal Liquor Using Headspace-Solid Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. Food Sci. 2012, 33, 110–116. [Google Scholar]
- Castro, R.; Natera, R.; Duran, E.; Garcia-Barroso, C. Application of solid phase extraction techniques to analyse volatile compounds in wines and other enological products. Eur. Food Res. Technol. 2008, 228, 1–18. [Google Scholar] [CrossRef]
- Ochiai, N.; Sasamoto, K.; Ieda, T.; David, F.; Sandra, P. Multi-stir bar sorptive extraction for analysis of odor compounds in aqueous samples. J. Chromatogr. A 2013, 1315, 70–79. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; Lopez, R.; Escudero, A.; Cacho, J. Identification of three novel compounds in wine by means of a laboratory-constructed multidimensional gas chromatographic system. J. Chromatogr. A 2006, 1122, 202–208. [Google Scholar] [CrossRef]
- Campo, E.; Cacho, J.; Ferreira, V. Multidimensional chromatographic approach applied to the identification of novel aroma compounds in wine-Identification of ethyl cyclohexanoate, ethyl 2-hydroxy-3-methylbutyrate and ethyl 2-hydroxy-4-methylpentanoate. J. Chromatogr. A 2006, 1137, 223–230. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar]
- Coelho, E.; Rocha, S.M.; Delgadillo, I.; Coimbra, M.A. Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. ‘Baga’ ripening. Anal. Chim. Acta. 2006, 563, 204–214. [Google Scholar]
- Wang, L.; Hu, G.Y.; Lei, L.B.; Lin, L.; Wang, D.Q.; Wu, J.X. Identification and Aroma Impact of Volatile Terpenes in Moutai Liquor. Int. J. Food Prop. 2016, 19, 1335–1352. [Google Scholar]
- Du, H.; Fan, W.L.; Xu, Y. Characterization of Geosmin as Source of Earthy Odor in Different Aroma Type Chinese Liquors. J. Agric. Food Chem. 2011, 59, 8331–8337. [Google Scholar]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar]
- Roland, A.; Schneider, R.; Razungles, A.; Cavelier, F. Varietal Thiols in Wine: Discovery, Analysis and Applications. Chem. Rev. 2011, 111, 7355–7376. [Google Scholar]
- Song, X.B.; Zhu, L.; Jing, S.; Li, Q.; Ji, J.; Zheng, F.P.; Zhao, Q.Z.; Sun, J.Y.; Chen, F.; Zhao, M.M.; et al. Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. J. Agric. Food Chem. 2020, 68, 7946–7954. [Google Scholar]
- Wang, L.L.; Fan, S.S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar]
- Sha, S.; Chen, S.; Qian, M.; Wang, C.; Xu, Y. Characterization of the Typical Potent Odorants in Chinese Roasted Sesame-like Flavor Type Liquor by Headspace Solid Phase Microextraction–Aroma Extract Dilution Analysis, with Special Emphasis on Sulfur-Containing Odorants. J. Agric. Food Chem. 2017, 65, 123–131. [Google Scholar]
- Du, X.F.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of Volatiles from Two Subtropical Strawberry Cultivars Using GC-Olfactometry, GC-MS Odor Activity Values, and Sensory Analysis. J. Agric. Food Chem. 2011, 59, 12569–12577. [Google Scholar] [CrossRef] [PubMed]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Siebert, T.E.; Barker, A.; Barter, S.R.; Lopes, M.A.D.B.; Herderich, M.J.; Francis, I.L. Analysis, potency and occurrence of (Z)-6-dodeceno-γ-lactone in white wine. Food Chem. 2018, 256, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma Characterization of Chinese Rice Wine by Gas Chromatography-Olfactometry, Chemical Quantitative Analysis, and Aroma Reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef]
- Fan, W.L.; Shen, H.Y.; Xu, Y. Quantification of volatile compounds in Chinese soy sauce aroma type liquor by stir bar sorptive extraction and gas chromatography-mass spectrometry. J. Sci. Food Agric. 2011, 91, 1187–1198. [Google Scholar] [CrossRef]
Sample Availability: Samples of all chemicals used in this study are available from the authors. |
Class | Number of Compounds | |||
---|---|---|---|---|
SPME | SPE | SBSE | Total | |
Esters | 125 | 125 | 121 | 179 |
Aldehydes & Ketones | 71 | 66 | 66 | 111 |
Terpenes | 62 | 30 | 45 | 82 |
Alcohols | 57 | 47 | 50 | 81 |
Sulfides | 29 | 20 | 27 | 37 |
Furans | 20 | 18 | 21 | 29 |
Nitrogenous compounds | 6 | 23 | 18 | 29 |
Acids | 19 | 18 | 20 | 23 |
Phenols | 13 | 14 | 15 | 18 |
Lactones | 7 | 12 | 12 | 17 |
Total | 409 | 373 | 395 | 606 |
NO. | Compounds | RT1 a | RT2 b | Similarity | LRIcal c | LRIlit d | Identification e |
---|---|---|---|---|---|---|---|
1 | δ-3-Carene | 784 | 2.98 | 842 | 1139 | 1166 | RI, MS, Tent |
2 | α-Limonene | 892 | 2.8 | 913 | 1193 | 1200 | RI, MS, STD |
3 | 1,8-Cineole | 920 | 2.97 | 862 | 1207 | 1211 | RI, MS, Tent |
4 | Terpinolene | 1124 | 2.69 | 886 | 1306 | 1280 | RI, MS, STD |
5 | α-Thujone | 1340 | 2.44 | 790 | 1414 | 1431 | RI, MS, Tent |
6 | trans-Linalool oxide | 1460 | 1.99 | 925 | 1476 | 1483 | RI, MS, Tent |
7 | cis-Linalool oxide | 1464 | 2.02 | 921 | 1478 | 1454 | RI, MS, Tent |
8 | α-Longipinene | 1472 | 3.59 | 828 | 1483 | 1482 | RI, MS, Tent |
9 | α-Copaene | 1504 | 3.63 | 831 | 1500 | 1497 | RI, MS, Tent |
10 | Daucene | 1508 | 3.63 | 879 | 1502 | 1495 | RI, MS, STD |
11 | Longicyclene | 1528 | 3.67 | 889 | 1513 | 1497 | RI, MS, Tent |
12 | Theaspirane B | 1532 | 3.17 | 717 | 1515 | 1522 | RI, MS, Tent |
13 | Camphor | 1532 | 3.87 | 758 | 1515 | 1540 | RI, MS, STD |
14 | (−)-Camphor | 1564 | 2.41 | 949 | 1532 | 1532 | RI, MS, Tent |
15 | Vitispirane | 1576 | 2.95 | 853 | 1539 | 1527 | RI, MS, Tent |
16 | α-Gurjunene | 1580 | 3.77 | 903 | 1541 | 1529 | RI, MS, Tent |
17 | Linalool | 1588 | 1.81 | 947 | 1545 | 1552 | RI, MS, STD |
18 | Theaspirane | 1600 | 3.11 | 838 | 1552 | 1523 | RI, MS, Tent |
19 | α-Cedrene | 1628 | 3.74 | 877 | 1568 | 1571 | RI, MS, STD |
20 | Carvomenthone | 1628 | 2.46 | 753 | 1567 | 1552 | RI, MS, Tent |
21 | β-Funebrene | 1636 | 3.7 | 860 | 1572 | 1588 | RI, MS, Tent |
22 | Junipene | 1656 | 3.61 | 926 | 1583 | 1583 | RI, MS, Tent |
23 | d-Fenchyl alcohol | 1664 | 1.87 | 942 | 1586 | 1588 | RI, MS, Tent |
24 | α-trans-Bergamotene | 1672 | 3.35 | 903 | 1591 | 1583 | RI, MS, Tent |
25 | α-Guaiene | 1684 | 3.48 | 860 | 1598 | 1598 | RI, MS, Tent |
26 | β-Elemene | 1684 | 3.04 | 908 | 1598 | 1586 | RI, MS, Tent |
27 | Calarene | 1692 | 3.62 | 916 | 1602 | 1604 | RI, MS, STD |
28 | trans-Caryophyllene | 1700 | 3.43 | 949 | 1607 | 1581 | RI, MS, STD |
29 | Terpinen-4-ol | 1704 | 2.09 | 940 | 1608 | 1628 | RI, MS, STD |
30 | Isophorone | 1708 | 2.07 | 920 | 1610 | 1600 | RI, MS, STD |
31 | trans-Edulan | 1720 | 2.8 | 748 | 1617 | 1620 | RI, MS, Tent |
32 | β-Terpineol | 1748 | 1.91 | 862 | 1632 | 1616 | RI, MS, Tent |
33 | β-Cyclocitral | 1748 | 2.4 | 824 | 1632 | 1613 | RI, MS, STD |
34 | α-Patchoulene | 1776 | 3.86 | 819 | 1648 | 1640 | RI, MS, Tent |
35 | Alloaromadendrene | 1788 | 3.88 | 884 | 1655 | 1644 | RI, MS, Tent |
36 | β-Barbatene | 1800 | 3.84 | 746 | 1662 | 1667 | RI, MS, Tent |
37 | γ-Gurjunene | 1804 | 3.93 | 919 | 1664 | 1674 | RI, MS, Tent |
38 | Isoborneol | 1820 | 2.03 | 803 | 1671 | 1672 | RI, MS, Tent |
39 | α-Humulene | 1832 | 3.78 | 919 | 1679 | 1680 | RI, MS, Tent |
40 | l-Borneol | 1852 | 2.05 | 730 | 1689 | 1675 | RI, MS, Tent |
41 | α-Terpineol | 1872 | 2.02 | 958 | 1700 | 1700 | RI, MS, STD |
42 | γ-Amorphene | 1864 | 3.68 | 895 | 1696 | 1724 | RI, MS, Tent |
43 | Ledene | 1880 | 3.68 | 902 | 1705 | 1701 | RI, MS, Tent |
44 | trans-Borneol | 1880 | 1.95 | 924 | 1704 | 1679 | RI, MS, Tent |
45 | β-Chamigrene | 1900 | 3.66 | 864 | 1716 | 1702 | RI, MS, Tent |
46 | Valencene | 1928 | 3.44 | 899 | 1731 | 1726 | RI, MS, Tent |
47 | α-bisabolene | 1936 | 3.18 | 878 | 1735 | 1720 | RI, MS, STD |
48 | Germacrene A | 1956 | 3.37 | 839 | 1747 | 1743 | RI, MS, Tent |
49 | α-Chamigrene | 1960 | 3.46 | 851 | 1749 | 1753 | RI, MS, Tent |
50 | δ-Cadinene | 1988 | 3.25 | 932 | 1764 | 1753 | RI, MS, STD |
51 | β-Citronellol | 1992 | 1.77 | 889 | 1765 | 1771 | RI, MS, STD |
52 | 7 epi-a-Selinene | 2008 | 3.26 | 873 | 1775 | 1772 | RI, MS, Tent |
53 | α-Curcumene | 2016 | 2.79 | 881 | 1779 | 1788 | RI, MS, Tent |
54 | Nerol | 2072 | 1.7 | 845 | 1811 | 1821 | RI, MS, Tent |
55 | Isogeraniol | 2096 | 1.69 | 832 | 1827 | 1818 | RI, MS, Tent |
56 | β-Damascenone | 2104 | 2.26 | 910 | 1832 | 1827 | RI, MS, STD |
57 | Dihydro-β-ionone | 2124 | 2.36 | 835 | 1845 | 1854 | RI, MS, Tent |
58 | l-calamenene | 2124 | 2.81 | 946 | 1846 | 1838 | RI, MS, STD |
59 | Geraniol | 2132 | 1.7 | 872 | 1850 | 1851 | RI, MS, STD |
60 | trans-Geranylacetone | 2148 | 2.19 | 877 | 1861 | 1862 | RI, MS, STD |
61 | Geosmin | 2148 | 2.32 | 902 | 1861 | 1858 | RI, MS, STD |
62 | α-Ionone | 2156 | 2.2 | 846 | 1866 | 1866 | RI, MS, STD |
63 | α-Dehydro-himachalene | 2184 | 2.61 | 836 | 1885 | 1882 | RI, MS, Tent |
64 | α-Calacorene | 2248 | 2.53 | 898 | 1930 | 1904 | RI, MS, Tent |
65 | Palustrol | 2264 | 2.46 | 899 | 1941 | 1938 | RI, MS, Tent |
66 | trans-β-Ionone | 2280 | 2.15 | 854 | 1952 | 1953 | RI, MS, STD |
67 | cis-Jasmone | 2292 | 1.99 | 859 | 1961 | 1955 | RI, MS, STD |
68 | β-Caryophyllene oxide | 2296 | 2.17 | 792 | 1964 | 1990 | RI, MS, Tent |
69 | d-Nerolidol | 2388 | 1.84 | 921 | 2036 | 2010 | RI, MS, Tent |
70 | E-Nerolidol | 2392 | 1.82 | 926 | 2040 | 2054 | RI, MS, Tent |
71 | Epicubenol | 2436 | 2.07 | 765 | 2077 | 2078 | RI, MS, Tent |
72 | α-Corocalene | 2436 | 2.15 | 863 | 2077 | 2083 | RI, MS, Tent |
73 | Cubenol | 2436 | 2.07 | 787 | 2077 | 2071 | RI, MS, Tent |
74 | 6-Isocedrol | 2496 | 1.95 | 894 | 2135 | 2162 | RI, MS, Tent |
75 | α-Cedrol | 2496 | 1.95 | 877 | 2135 | 2127 | RI, MS, Tent |
76 | β-Bisabolol | 2520 | 1.82 | 728 | 2160 | 2151 | RI, MS, Tent |
77 | Torreyol | 2556 | 1.92 | 815 | 2197 | 2197 | RI, MS, Tent |
78 | α-Cadinol | 2556 | 1.92 | 810 | 2197 | 2217 | RI, MS, STD |
79 | α-Eudesmol | 2592 | 1.98 | 719 | 2237 | 2223 | RI, MS, Tent |
80 | β-Eudesmol | 2600 | 2 | 821 | 2246 | 2246 | RI, MS, Tent |
81 | Farnesol | 2700 | 1.95 | 846 | 2353 | 2351 | RI, MS, Tent |
82 | 9H-Fluorene | 2732 | 2.16 | 907 | 2386 | 2374 | RI, MS, Tent |
No | Compounds | RT1 a | RT2 b | Similarity | LRIcal c | LRIlit d | Identification e |
---|---|---|---|---|---|---|---|
1 | Methanethiol | 292 | 1.34 | 985 | 669 | 643 | RI, MS, STD |
2 | Dimethyl sulfide | 316 | 1.43 | 895 | 750 | 774 | RI, MS, STD |
3 | Methyl thiolacetate | 628 | 1.69 | 814 | 1054 | 1052 | RI, MS, Tent |
4 | Dimethyl disulfide | 668 | 1.81 | 960 | 1077 | 1078 | RI, MS, STD |
5 | S-Methyl propanethioate | 752 | 1.95 | 749 | 1122 | 1131 | RI, MS, STD |
6 | Methyl ethyl disulfide | 804 | 2.05 | 736 | 1149 | 1141 | RI, MS, Tent |
7 | S-Methyl ester butanethioic acid | 908 | 2.13 | 835 | 1201 | 1198 | RI, MS, STD |
8 | Thiazole | 1032 | 1.59 | 907 | 1261 | 1259 | RI, MS, STD |
9 | Dimethyl trisulphide | 1312 | 2.16 | 966 | 1399 | 1400 | RI, MS, STD |
10 | S-Methyl hexanethioate | 1340 | 2.37 | 895 | 1414 | 1412 | RI, MS, Tent |
11 | Methyl pentyl disulfide | 1400 | 2.48 | 764 | 1445 | 1445 | RI, MS, Tent |
12 | 4,5-Dimethyl-2-isopropyl-thiazole | 1424 | 2.47 | 747 | 1457 | 1436 | RI, MS, Tent |
13 | Ethyl 2-(methylthio)acetate | 1428 | 1.88 | 902 | 1459 | 1484 | RI, MS, STD |
14 | Methional | 1448 | 1.72 | 826 | 1470 | 1480 | RI, MS, STD |
15 | 2-Pentyl-thiophene | 1448 | 2.51 | 893 | 1470 | 1452 | RI, MS, Tent |
16 | Furfuryl methyl sulfide | 1504 | 1.87 | 913 | 1499 | 1492 | RI, MS, Tent |
17 | 4,5-Dimethyl-2-isobutylthiazole | 1568 | 2.57 | 709 | 1534 | 1514 | RI, MS, Tent |
18 | 2-(Methylthio)ethanol | 1576 | 1.5 | 725 | 1538 | 1520 | RI, MS, Tent |
19 | Methyl propyl trisulfide | 1588 | 2.47 | 752 | 1545 | 1529 | RI, MS, Tent |
20 | Ethyl 3-(methylthio)propionate | 1644 | 2 | 961 | 1575 | 1580 | RI, MS, STD |
21 | 2,5-Dimethyl-1,3,4-trithiolane | 1724 | 2.32 | 865 | 1619 | 1618 | RI, MS, Tent |
22 | 3-(Methylthio)propyl acetate | 1760 | 1.99 | 752 | 1639 | 1627 | RI, MS, Tent |
23 | 2,4,5-Trithiahexane | 1828 | 2.26 | 895 | 1676 | 1662 | RI, MS, Tent |
24 | Methyl benzyl sulfide | 1836 | 2.36 | 932 | 1680 | 1665 | RI, MS, STD |
25 | 3-Thiophenecarboxaldehyde | 1868 | 1.77 | 711 | 1697 | 1687 | RI, MS, Tent |
26 | 2-Thiophenecarboxaldehyde | 1896 | 1.73 | 920 | 1713 | 1722 | RI, MS, STD |
27 | Methionol | 1916 | 1.56 | 914 | 1724 | 1721 | RI, MS, STD |
28 | 5-Methyl-2-formylthiophene | 1932 | 1.9 | 814 | 1733 | 1759 | RI, MS, Tent |
29 | Dimethyl tetrasulphide | 1988 | 2.32 | 727 | 1763 | 1750 | RI, MS, Tent |
30 | 1,2,4-Trithiolane | 2004 | 2 | 866 | 1772 | 1760 | RI, MS, Tent |
31 | 3-Acetylthiophene | 2044 | 1.75 | 752 | 1794 | 1772 | RI, MS, Tent |
32 | 2-Acetylthiophen | 2044 | 1.74 | 717 | 1794 | 1785 | RI, MS, STD |
33 | Furfuryl methyl disulfide | 2088 | 1.94 | 846 | 1822 | 1813 | RI, MS, Tent |
34 | 3-Methyl-2-thiophenecarbaldehyde | 2104 | 1.76 | 798 | 1832 | 1815 | RI, MS, Tent |
35 | 1-(2-Thienyl) propanone | 2144 | 1.8 | 714 | 1858 | 1840 | RI, MS, Tent |
36 | Benzothiazole | 2320 | 1.78 | 835 | 1981 | 1958 | RI, MS, STD |
37 | 2-Phenylthiophene | 2476 | 1.76 | 780 | 2114 | 2124 | RI, MS, STD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Gao, M.; Liu, Z.; Chen, S.; Xu, Y. Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu. Molecules 2020, 25, 4429. https://doi.org/10.3390/molecules25194429
Wang L, Gao M, Liu Z, Chen S, Xu Y. Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu. Molecules. 2020; 25(19):4429. https://doi.org/10.3390/molecules25194429
Chicago/Turabian StyleWang, Lulu, Mengxin Gao, Zhipeng Liu, Shuang Chen, and Yan Xu. 2020. "Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu" Molecules 25, no. 19: 4429. https://doi.org/10.3390/molecules25194429
APA StyleWang, L., Gao, M., Liu, Z., Chen, S., & Xu, Y. (2020). Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu. Molecules, 25(19), 4429. https://doi.org/10.3390/molecules25194429