Potential Anti-Acetylcholinesterase Activity of Cassia timorensis DC.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibitory Activity of Acetylcholinesterase by Cassia spp.
2.2. Identification of Isolated Compounds
2.3. In Vitro Acetylcholinesterase Enzyme Inhibition Activity
2.4. In Silico Molecular Docking
3. Materials and Methods
3.1. Materials (Chemicals) and Instruments
3.2. Plant Materials
3.3. Extraction of Cassia Species for Screening
3.4. Collection, Extraction and Fractionation of C. timorensis
3.5. Isolation from the Ethyl Acetate Fraction of C. timorensis Leaves
3.6. Isolation from the n-Hexane Fraction of C. timorensis Leaves
3.7. Isolation of Compounds of C. timorensis Flowers
3.8. In Vitro Acetylcholinesterase Assay
3.9. Statistical Analysis
3.10. In Silico Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jalwal, P.; Middha, A.; Ramchander, C. Recent advances on senna as a laxative: A comprehensive review. J. Pharm. Phytochem. 2017, 6, 349–353. [Google Scholar]
- Lavanya, B.; Maheswaran, A.; Vimal, N.; Vignesh, K.; Uvarani, K.Y.; Varsha, R. An overall view of cassia species phytochemical constituents and its pharmacological uses. Int. J. Pharm. Sci. Res. 2018, 3, 47–50. [Google Scholar]
- Kaur, I.; Ahmad, S.; Harikumar, S.L. Pharmacognosy, phytochemistry and pharmacology of Cassia occidentalis Linn. Int. J. Pharm. Phytochem. Res. 2014, 6, 151–155. [Google Scholar]
- Feitosa, C.M.; Freitas, R.M.; Luz, N.N.N.; Bezerra, M.Z.B.; Trevisan, M.T.S. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants. Braz. J. Boil. 2011, 71, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Bhalodia, N.R.; Nariya, P.B.; Shukla, V.J. Antibacterial and antifungal activity from flower extracts of Cassia fistula L.: An ethnomedicinal plant. Int. J. PharmTech Res. 2011, 3, 160–168. [Google Scholar]
- Sundaramoorthy, S.; Gunasekaran, S.; Arunachalam, S.; Sathiavelu, M. A Phytopharmacological Review on Cassia Species. J. Pharm. Sci. Res. 2016, 8, 260–264. [Google Scholar]
- Bhalodia, N.; Acharya, R.; Shukla, V. Evaluation of in vitro Antioxidant Activity of hydro-alcoholic seed extratcs of Cassia fistula linn. Free Radic. Antioxid. 2011, 1, 68–76. [Google Scholar] [CrossRef]
- Balkrishna, A.; Misra, L.N. Ayurvedic Plants in Brain Disorders: The Herbal Hope. J. Tradit. Med. Clin. Nat. 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Deshpande, H.A.; Bhalsing, S.R. Recent Advances in the phytochemistry of some medicinally important Cassia species: A review. Int. J. Pharma Med. Biol. Sci. 2013, 2, 60–78. [Google Scholar]
- Benek, O.; Korabecny, J.; Soukup, O. A Perspective on Multi-target Drugs for Alzheimer’s Disease. Trends Pharm. Sci. 2020, 41, 434–445. [Google Scholar] [CrossRef]
- Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P.-A.; Reist, M. In vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods. Eur. J. Pharm. Sci. 2008, 33, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, S.; Zahid, M.; Parveen, S.; Ahmad, Z.; Singh, P.K.; Parveen, Z. Alzheimer’s disease: Delivery of drugs through intrasanal route. J. Drug Deliv. Ther. 2016, 6, 60–69. [Google Scholar] [CrossRef]
- Moyo, M.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Phenolic composition, antioxidant and acetylcholinesterase inhibitory activities of Sclerocarya birrea and Harpephyllum caffrum (Anacardiaceae) extracts. Food Chem. 2010, 123, 69–76. [Google Scholar] [CrossRef]
- Craig, L.A.; Hong, N.S.; McDonald, R.J. Neuroscience and Biobehavioral Reviews Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2011, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C., Jr.; Bolzani, V.S.; Pimentel, L.S.; Castro, N.G.; Cabral, R.F.; Costa, R.S.; Floyd, C.; Rocha, M.S.; Young, M.C.M.; Barreiro, E.J.; et al. New selective acetylcholinesterase inhibitors designed from natural piperidine alkaloids. Bioorgan. Med. Chem. 2005, 13, 4184–4190. [Google Scholar] [CrossRef]
- Jung, H.A.; Ali, Y.; Jung, H.J.; Jeong, H.O.; Chung, H.Y.; Choi, J.S. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases. J. Ethnopharmacol. 2016, 191, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S.; Kamal, M.A. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef]
- Danish, M.; Singh, P.; Mishra, G.; Srivastava, S.; Jha, K.K.; Khosa, R.L. Cassia fistula Linn (Amulthus)—An Important Medicinal Plant: A Review of Its Traditional Uses, Phytochemistry and Pharmacological Properties. J. Nat. Prod. Plant Resour. 2011, 1, 101–118. [Google Scholar]
- Dave, H.; Ledwani, L. A review on anthraquinones isolated from Cassia species and their applications. Indian J. Nat. Prod. Resour. 2012, 3, 291–319. [Google Scholar]
- Singh, S.; Singh, S.K.; Yadav, A. A Review on Cassia species: Pharmacological, Traditional and Medicinal Aspects in Various Countries. Am. J. Phytomed. Clin. 2013, 1, 291–312. [Google Scholar]
- Senna siamea (Lam.) H.S. Irwin & Barneby. The Plant List—A Working List of All Plant Species. Available online: http://www.theplantlist.org/tpl/record/ild-1117 (accessed on 14 February 2019).
- Gritnasapan, W.; Tantisewie, B.; Vichiara, J. Chemical Constituents of Cassia timorensis and Cassia grandis. J. Sci. Soc. Thail. 1984, 10, 189–190. [Google Scholar] [CrossRef]
- Thongsaard, W.; Pongsakorn, S.; Sudsuang, R.; Bennett, G.; Kendall, D.A.; Marsden, A.; Barakol, C. A natural anxiolytic, inhibits striatal dopamine release but off uptake in vitro. Eur. J. Pharm. 1997, 319, 157–164. [Google Scholar] [CrossRef]
- Sukma, M.; Chaichantipyuth, C.; Murakami, Y.; Tohda, M.; Matsumoto, K.; Watanabe, H. CNS inhibitory effects of barakol, a constituent of Cassia siamia Lamk. J. Ethnopharmacol. 2002, 83, 87–94. [Google Scholar] [CrossRef]
- Li, G.; Shao, K.; Umeshappa, C.S. Recent progress in blood-brain barrier transportation research. In Brain Targeted Drug Delivery System; Gao, H., Gao, X., Eds.; Academic Press: London, UK, 2019; pp. 33–51. [Google Scholar]
- Thakur, R.S.; Ahirwar, B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J. Food Drug Anal. 2018, 27, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.; Mehdi, S.J.; Al-Fatlawi, A.A.; Zafaryab, M.; Ali, A.; Ahmad, I.; Singh, M.; Rizvi, M.M.A. Phytochemical Composition of Cassia fistula Fruit Extracts and its Anticancer Activity Against Human Cancer Cell Lines. J. Boil. Act. Prod. Nat. 2014, 4, 158–170. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Ali, A.M.; Aboul-Enein, S.M.; Mohamed, F.M.; Abou, E.; Magdy, M.D.; Mohammed, A.R.H. Phytochemical, cytotoxicity and antioxidant investigation of Cassia alata leaves growing in Egypt. J. Innov. Pharm. Biol. Sci. 2017, 4, 97–105. [Google Scholar]
- Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol an ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 2012, 1, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Rowshanul, H.M.; Farjana, N.; Matiar, R.; Ekramul, H.M.; Rezaul, K.M. Isolation of stigmasterol and β-sitosterol from methanolic extract of root. Pak. J. Biol. Sci 2007, 10, 4174–4176. [Google Scholar]
- Kamboj, A.; Saluja, A.K. Isolation of stigmasterol and β-sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Int. J. Pharm. Pharm. Sci. 2011, 3, 94–96. [Google Scholar]
- Malhotra, S.; Misra, K. Anthraquinones from Cassia sophera heartwood. Phytochemistry 1982, 21, 197–199. [Google Scholar] [CrossRef]
- Beulah, G.G.; Soris, P.T.; Mohan, V.R. GC-MS Determination of Bioactive Compounds of Dendrophthoe falcata (L.F) Ettingsh: An Epiphytic Plant. Int. J. Health Sci. Res. 2018, 8, 261–269. [Google Scholar]
- Verma, R.N.; Batra, A. Isolation and analytic characterization of rebaudioside A and GC-MS analysis of methanolic leaves extract of Stevia rebaudiana Bert. Ann. Phytomed. 2013, 2, 108–114. [Google Scholar]
- Geetha, D.; Rajeswari, M.; Jayashree, I.; Qu, S. Chemical profiling of Elaeocarpus serratus L. by GC-MS. Asian Pac. J. Trop. Biomed. 2013, 3, 985–987. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Zahoor, M.; Zeb, A.; Sahibzada, M.U.K.; Bari, W.U.; Naz, S. Isolation, characterization, pharmacological evaluation and in silico modeling of bioactive secondary metabolites from Ziziphus oxyphylla a member of Rhamnaceae family. Trop. J. Pharm. Res. 2020, 19, 351–359. [Google Scholar] [CrossRef]
- Faria, A.; Pestana, D.; Teixeira, D.; Azevedo, J.; De Freitas, V.; Mateus, N.; Calhau, C. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell. Mol. Boil. Lett. 2010, 15, 234–241. [Google Scholar] [CrossRef]
- Végh, K.; Riethmüller, E.; Hosszú, L.; Darcsi, A.; Müller, J.; Alberti, A.; Toth, A.; Béni, S.; Könczöl, Á.; Balogh, G.T.; et al. Three newly identified lipophilic flavonoids in Tanacetum parthenium supercritical fluid extract penetrating the Blood-Brain Barrier. J. Pharm. Biomed. Anal. 2018, 149, 488–493. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Akobirshoeva, A.; Zilfikarov, I.N.; Vennos, C. Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis) Flowers and Preparations. Int. J. Mol. Sci. 2017, 18, 1685. [Google Scholar] [CrossRef] [Green Version]
- Uriarte-Pueyo, I.; Calvo, M.I. Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem. 2011, 18, 5289–5302. [Google Scholar] [CrossRef]
- Balkis, A.; Tran, K.; Lee, Y.Z.; Ng, K. Screening Flavonoids for Inhibition of Acetylcholinesterase Identified Baicalein as the Most Potent Inhibitor. J. Agric. Sci. 2015, 7, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Čolović, M.; Krstić, D.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Khaw, K.-Y.; Choi, S.; Tan, S.; Wahab, H.A.; Chan, K.; Murugaiyah, V. Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine 2014, 21, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem.-Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neto, D.C.F.; de Souza Ferreira, M.; da Conceição Petronilho, E.; Lima, J.A.; de Azeredo, S.O.F.; de Oliveira Carneiro Brum, J.; do Nascimento, C.J.; Villar, J.D.F. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017, 7, 33944–33952. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, H.M.; Guillou, C.; Guénard, D.; Argaman, A.; Botti, S.; Badet, B.; Thal, C.; Silman, A.I.; Sussman, J.L. The Complex of a Bivalent Derivative of Galanthamine with Torpedo Acetylcholinesterase Displays Drastic Deformation of the Active-Site Gorge: Implications for Structure-Based Drug Design. J. Am. Chem. Soc. 2004, 126, 15405–15411. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Plants | Part | Percentage Inhibition (%) 1 | Strength of Inhibition |
---|---|---|---|
C. timorensis | Leaves | 94.69 ± 3.08 | Good |
C. timorensis | Stems | 97.16 ± 2.08 | Good |
C. timorensis | Flowers | 96.94 ± 0.73 | Good |
C. timorensis | Fruits | 49.09 ± 1.64 | Moderate |
C. grandis | Leaves | 86.09 ± 0.66 | Good |
C. grandis | Stems | 91.76 ± 0.73 | Good |
C. fistula | Leaves | 20.63 ± 6.68 | Poor |
C. fistula | Stems | 64.32 ± 0.09 | Good |
C. fistula | Flowers | 8.72 ± 1.10 | Poor |
C. fistula | Fruits | 19.48 ± 2.86 | Poor |
C. spectabilis | Leaves | 45.96 ± 8.20 | Moderate |
C. spectabilis | Stems | 27.18 ± 4.79 | Moderate |
C. spectabilis | Fruits | 37.32 ± 2.07 | Moderate |
C. alata | Leaves | 26.40 ± 6.65 | Moderate |
C. alata | Stems | 18.43 ± 7.42 | Poor |
C. alata | Flowers | 29.01 ± 3.05 | Moderate |
C. alata | Fruits | 27.86 ± 1.63 | Moderate |
Plants | Fractions | Percentage Inhibition (%) 1 |
---|---|---|
C. timorensis leaves | Hexane | 30.92 ± 4.92 |
Ethyl acetate | 98.98 ± 0.57 | |
Butanol | 91.83 ± 1.50 | |
Aqueous | 98.80 ± 0.55 | |
C. timorensis stems | Hexane | 26.66 ± 1.70 |
Ethyl acetate | 30.84 ± 2.83 | |
Butanol | 94.92 ± 1.60 | |
Aqueous | 84.35 ± 1.26 | |
C. timorensis flowers | Hexane | 92.35 ± 0.01 |
Ethyl acetate | 95.98 ± 1.30 | |
Butanol | 98.16 ± 0.05 | |
Aqueous | 38.32 ± 0.09 |
Compound | AChE Inhibition (IC50) µM |
---|---|
1 | 83.71 ± 4.67 |
Quercetin | 249.10 ± 27.14 |
Galantamine | 4.63 ± 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azman, N.A.N.; Alhawarri, M.B.; Rawa, M.S.A.; Dianita, R.; Gazzali, A.M.; Nogawa, T.; Wahab, H.A. Potential Anti-Acetylcholinesterase Activity of Cassia timorensis DC. Molecules 2020, 25, 4545. https://doi.org/10.3390/molecules25194545
Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, Wahab HA. Potential Anti-Acetylcholinesterase Activity of Cassia timorensis DC. Molecules. 2020; 25(19):4545. https://doi.org/10.3390/molecules25194545
Chicago/Turabian StyleAzman, Nurul Amira Nurul, Maram B. Alhawarri, Mira Syahfriena Amir Rawa, Roza Dianita, Amirah Mohd Gazzali, Toshihiko Nogawa, and Habibah A. Wahab. 2020. "Potential Anti-Acetylcholinesterase Activity of Cassia timorensis DC." Molecules 25, no. 19: 4545. https://doi.org/10.3390/molecules25194545
APA StyleAzman, N. A. N., Alhawarri, M. B., Rawa, M. S. A., Dianita, R., Gazzali, A. M., Nogawa, T., & Wahab, H. A. (2020). Potential Anti-Acetylcholinesterase Activity of Cassia timorensis DC. Molecules, 25(19), 4545. https://doi.org/10.3390/molecules25194545