Pre-Treatment Methods for Regeneration of Spent Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Regeneration of Pre-Treated SAC
3.2. Acid Pre-Treatment Effect
3.3. Combination of Heat and Acid Pre-Treatment
3.4. Pre-Treatment Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, N. Water Policy and Institutions in the Republic of Korea; No. 985, ADBI Working Paper Series; Asian Development Bank Institute: Tokyo, Japan, 2019. [Google Scholar]
- Duan, X.-h.; Srinivasakannan, C.; Qu, W.-W.; Xin, W.; Peng, J.-h.; Zhang, L.-b. Regeneration of microwave assisted spent activated carbon: Process optimization, adsorption isotherms and kinetics. Chem. Engineer. Process. Process Intensif. 2012, 53, 53–62. [Google Scholar] [CrossRef]
- Oladejo, J.; Shi, K.; Chen, Y.; Luo, X.; Gang, Y.; Tao, W. Closing the active carbon cycle: Regeneration of spent activated carbon from a wastewater treatment facility for resource optimization. Chem. Engineer. Process. Process Intensif. 2020, 150, 107878. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Liu, C.; Peng, J.; Li, S.; Zhang, L.; Liu, C. Study on regeneration of spent activated carbon by using a clean technology. Green Process. Synth. 2017, 6, 499–510. [Google Scholar] [CrossRef]
- Islam, M.S.; Rouf, M.A. Waste biomass as sources for activated carbon production-A review. Bangladesh J. Sci. Ind. Res. 2012, 47, 347–364. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: Review. Chem. Engineer. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricotstone. J. Hazard. Mater. 2008, 150, 322–327. [Google Scholar] [CrossRef]
- Nahm, S.W.; Shim, W.G.; Park, Y.-K.; Kim, S.C. Thermal and chemical regeneration of spent activated carbon and its adsorption property for toluene. Chem. Engineer. J. 2012, 210, 500–509. [Google Scholar] [CrossRef]
- Tay, J.H.; Chen, X.G.; Jeyaseelan, S. Optimising the preparation of activated carbon from digested sewage sludge and coconut busk. Chemosphere 2001, 44, 45–51. [Google Scholar] [CrossRef]
- Baseri, J.R.; Palanisamy, P.N.; Sivakumar, P. Preparation and characterization of activated carbon from Thevetia peruviana for the removal of dyes from textile waste water. Adv. Appl. Sci. Res. 2012, 3, 377–383. [Google Scholar]
- Hamura, D.; Sagayaga, A.; Babcock, R. Literature review of regeneration methods and local disposal alternatives; WRRC-98-12; Water Resources Research Center: Honolulu, HI, USA, 1998. [Google Scholar]
- Moreno-castilla, C.; Carrasco-marín, F.; Maldonado-hódar, F.J.; Rivera-utrilla, J. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon 1998, 36, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-Q.; Jiang, H.-T.; Ma, C.-Y.; Yong, D. Microwave regeneration characteristics of activated carbon for flue gas desulfurization. J. Fuel Chem. Technol. 2012, 40, 1366–1371. [Google Scholar] [CrossRef]
- Nasruddin, M.N.; Fahmi, M.R.; Azner, A.C.Z.; Yen, T.S. Regeneration of Spent Activated Carbon from wastewater treatment plant application. J. Phys. Conf. Ser. 2018, 1116, 032022. [Google Scholar] [CrossRef]
- Shah, I.K.; Pre, P.; Alappat, B.J. Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. J. Taiwan Inst. Chem. Engineer. 2014, 45, 1733–1738. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-Bret, C.; Eudes, V.; Bressy, A.; et al. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot. Sci. Total Environ. 2016, 542, 983–996. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Castilla, C.; Ferro-Garcia, M.A.; Joly, J.P.; Bautista-Toledo, I.; Carrasco-Marin, F.; Rivera-Utrilla, J. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir 1995, 11, 4386–4392. [Google Scholar] [CrossRef]
- Huling, S.G.; Kan, E.; Caldwell, C.; Park, S. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon-A pilot study. J. Hazard. Mater. 2012, 205, 55–62. [Google Scholar] [CrossRef]
- Lee, G.B.; Park, J.E.; Hwang, S.Y.; Kim, J.H.; Kim, S.; Kim, H.; Hong, B.U. Comparison of by-product gas composition by activations of activated carbon. Carbon Lett. 2019, 29, 263–272. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Lee, G.B.; Kim, H.; Park, J.E. Influence of mixed methods on the surface area and gas products of activated carbon. Carbon Lett. 2020. (in Press). [Google Scholar] [CrossRef]
- Park, J.E.; Lee, G.B.; Hong, B.U.; Hwang, S.Y. Regeneration of Activated Carbons Spent by Waste Water Treatment Using KOH Chemical Activation. Appl. Sci. 2019, 9, 5132. [Google Scholar] [CrossRef] [Green Version]
- Cazetta, A.L.; Junior, O.P.; Vargas, A.M.M.; Silva, A.P.; Zou, X.; Asefa, T.; Almeid, V.C. Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodology. J. Anal. Appl. Pyrolysis 2012, 101, 53–60. [Google Scholar] [CrossRef]
- Miguel, G.S.; Lambert, S.D.; Graham, N.J.D. Thermal Regeneration of Granular Activated Carbons Using Inert Atmospheric Conditions. Environ. Technol. 2002, 23, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B.; Vogels, G.; Van Herck, P.; Vandecasteele, C. Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. J. Hazard. Mater. 1998, 57, 127–144. [Google Scholar] [CrossRef]
- Guo, Y.; Du, E. The Effects of Thermal Regeneration Conditions and Inorganic Compounds on the Characteristics of Activated Carbon Used in Power Plant. Energy Proced. 2012, 177, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent. Carbon 2001, 39, 1319–1326. [Google Scholar] [CrossRef]
- Lua, A.C.; Yang, T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 2004, 274, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Huang, X. Fabrication and Properties of Carbon Fibers. Materials (Basel) 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Xia, H.; Wu, J.; Xia, Y.; Zhang, L.; Peng, J.; Wang, S.; Zheng, Z.; Zhang, S. Microwave assisted regeneration of spent activated carbon from petrochemical plant using response surface methodology. J. Porous Mater. 2015, 22, 137–146. [Google Scholar] [CrossRef]
- Li, Y.; Jin, H.; Liu, W.; Su, H.; Lu, Y.; Li, J. Study on regeneration of waste powder activated carbon through pyrolysis and its adsorption capacity of phosphorus. Sci. Rep. 2018, 8, 778. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.-H.; Kim, Y.-S.; Jeon, S.-B.; Seo, J.-B.; Jung, J.-H.; Oh, K.-J. Improvement of thermal regeneration of spent granular activated carbon using air agent: Application of sintering and deoxygenation. Korean J. Chem. Engineer. 2014, 31, 1641–1650. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available. |
SAC | SAC-C | SAC-H-C | SAC-A-C | SAC-H-A-C | ||
---|---|---|---|---|---|---|
BET surface area (m2/g) | 681.59 | 1631.70 | 825.40 | 1329.00 | 1594.76 | |
Proximate analysis (%) | Volatile | 13.85 | 12.40 | 6.46 | 13.48 | 7.48 |
Fixed-C | 71.28 | 73.70 | 79.49 | 80.38 | 83.30 | |
Ash | 14.86 | 13.90 | 14.04 | 6.14 | 9.22 |
Organic Acid | Inorganic Acid | ||||||
---|---|---|---|---|---|---|---|
C6H8O7 | C4H6O6 | C2H2O4 | HCl | H2O2 | H3PO4 | ||
Specific surface area (m2/g) | 967.19 | 1146.24 | 1187.27 | 836.87 | 980.67 | 1329.37 | |
Proximate analysis (%) | Volatile | 15.52 | 18.69 | 17.44 | 14.43 | 16.23 | 13.48 |
Fixed-C | 75.91 | 71.16 | 73.29 | 74.65 | 72.85 | 80.38 | |
Ash | 8.57 | 10.15 | 9.27 | 10.92 | 10.92 | 6.14 |
Organic Acid | Inorganic Acid | ||||||
---|---|---|---|---|---|---|---|
C6H8O7 | C4H6O6 | C2H2O4 | HCl | H2O2 | H3PO4 | ||
Specific surface area (m2/g) | 1037.10 | 1089.90 | 948.10 | 1637.42 | 1489.06 | 1594.76 | |
Proximate analysis (%) | Volatile | 6.15 | 6.26 | 6.14 | 15.97 | 15.11 | 7.48 |
Fixed-C | 74.4 | 74.14 | 77.34 | 73.25 | 74.55 | 83.30 | |
Ash | 19.46 | 19.59 | 16.51 | 10.78 | 10.37 | 9.22 | |
Ultimate analysis (%) | Carbon | 79.24 | 79.99 | 77.53 | 83.21 | 84.75 | 87.83 |
Hydrogen | 1.06 | 1.37 | 1.18 | 1.02 | 0.77 | 1.06 | |
Oxygen | 17.19 | 16.18 | 18.86 | 12.17 | 12.48 | 9.66 | |
Nitrogen | 0.55 | 0.61 | 0.27 | 0.92 | 0.54 | 0.29 | |
Sulfur | 0.05 | 0.06 | 0.06 | 1.33 | 0.07 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.Y.; Lee, G.B.; Kim, J.H.; Hong, B.U.; Park, J.E. Pre-Treatment Methods for Regeneration of Spent Activated Carbon. Molecules 2020, 25, 4561. https://doi.org/10.3390/molecules25194561
Hwang SY, Lee GB, Kim JH, Hong BU, Park JE. Pre-Treatment Methods for Regeneration of Spent Activated Carbon. Molecules. 2020; 25(19):4561. https://doi.org/10.3390/molecules25194561
Chicago/Turabian StyleHwang, Sang Youp, Gi Bbum Lee, Ji Hyun Kim, Bum Ui Hong, and Jung Eun Park. 2020. "Pre-Treatment Methods for Regeneration of Spent Activated Carbon" Molecules 25, no. 19: 4561. https://doi.org/10.3390/molecules25194561
APA StyleHwang, S. Y., Lee, G. B., Kim, J. H., Hong, B. U., & Park, J. E. (2020). Pre-Treatment Methods for Regeneration of Spent Activated Carbon. Molecules, 25(19), 4561. https://doi.org/10.3390/molecules25194561