Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Δ-FeOOH Nanoparticles’ Synthesis
2.3. Characterization of Materials
2.4. HRP Immobilization
2.4.1. Enzymatic Activity
2.4.2. Process Optimization Strategy—HRP Immobilization
2.5. Ferulic Acid Oxidation
3. Results and Discussion
3.1. Characterization of Materials
3.2. Immobilization Process Optimization Strategy - HRP
3.3. Ferulic Acid Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Horváth, I.T.; Anastas, P.T. Green chemistry. Chem. Rev. 2007, 107, 2167–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabás, B.; Fülöp, O.; Molontay, R.; Pályi, G. Impact of the discovery of fluorous biphasic systems on chemistry: A statistical network analysis. ACS Sustain. Chem. Eng. 2017, 5, 8108–8118. [Google Scholar] [CrossRef]
- Horváth, I.T. Sustainable chemistry. Chem. Rev. 2018, 118, 369–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, D.K.; Tucker, J.L.; Mergelsberg, I.; Dunn, P.J.; Kopach, M.E.; Purohit, V.C. Seven important elements for an effective green chemistry program: An IQ Consortium Perspective. Org. Process Res. Dev. 2013, 17, 1099–1109. [Google Scholar] [CrossRef]
- Veitch, N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 2004, 65, 249–259. [Google Scholar] [CrossRef]
- Arriel Torres, J.; Batista Chagas, P.M.; Cristina Silva, M.; Dos Santos, C.D.; Duarte Corrêa, A. Enzymatic oxidation of phenolic compounds in coffee processing wastewater. Water Sci. Technol. 2016, 73, 39–50. [Google Scholar] [CrossRef]
- Chang, Q.; Jiang, G.D.; Tang, H.Q.; Li, N.; Huang, J.; Wu, L.Y. Enzymatic removal of chlorophenols using horseradish peroxidase immobilized on superparamagnetic Fe3O4/graphene oxide nanocomposite. Chin. J. Catal. 2015, 36, 961–968. [Google Scholar] [CrossRef]
- Cheng, J.; Ming Yu, S.; Zuo, P. Horseradish Peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 2006, 40, 283–290. [Google Scholar] [CrossRef]
- Kermad, A.; Sam, S.; Ghellai, N.; Khaldi, K.; Gabouze, N. Horseradish peroxidase-modified porous silicon for phenol monitoring. Mater. Sci. Eng. B 2013, 178, 1159–1164. [Google Scholar] [CrossRef]
- Nicell, J. Kinetics of horseradish peroxidase-catalysed polymerization and precipitation of aqueous 4-chlorophenol. J. Chem. Technol. Biotechnol. 1994, 60, 203–215. [Google Scholar] [CrossRef]
- Sheldon, R. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Es, I.; Vieira, J.D.G.; Amaral, A.C. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol. 2015, 99, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.; Pelt, S. Van Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brena, B.M.; Batista-Viera, F. Immobilization of Enzymes. In Immobilization Enzymes and Cells; Guisan, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2006; Volume 22, pp. 15–30. [Google Scholar]
- Tavares, T.S.; Torres, J.A.; Silva, M.C.; Nogueira, F.G.E.; da Silva, A.C.; Ramalho, T.C. Soybean peroxidase immobilized on δ-FeOOH as new magnetically recyclable biocatalyst for removal of ferulic acid. Bioprocess Biosyst. Eng. 2018, 41, 97–106. [Google Scholar] [CrossRef]
- Silva, M.; Torres, J.; Nogueira, F.; Tavares, T.; Correa, A.D.; Oliveira, L.C.A.; Ramlho, T.C. Immobilization of soybean peroxidase on silica-coated magnetic particles: A magnetically recoverable biocatalyst for pollutant removal. RSC Adv. 2016, 6, 83856–83863. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, K.; Fernandez-Lafuente, R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym. Microb. Technol. 2011, 48, 107–122. [Google Scholar] [CrossRef]
- Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015, 33, 1162–1176. [Google Scholar] [CrossRef]
- Chagas, P.; da Silva, A.C.; Passamani, E.C.; Ardisson, J.D.; de Oliveira, L.C.A.; Fabris, J.D.; Paniago, R.M.; Monteiro, D.S.; Pereira, M.C. δ-FeOOH: A superparamagnetic material for controlled heat release under AC magnetic field. J. Nanoparticle Res. 2013, 15, 1544. [Google Scholar] [CrossRef]
- Schwertmann, U.; Cornell, R. Iron oxides in the Laboratory: Preparation and Characterization; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Weissman, S.A.; Anderson, N.G. Design of experiments (DOE) and process optimization. A review of recent publications. Org. Process Res. Dev. 2015, 19, 1605–1633. [Google Scholar] [CrossRef]
- Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3–40. [Google Scholar] [CrossRef]
- Khan, A.A.; Robinson, D.S. Hydrogen donor specificity of mango isoperoxidases. Food Chem. 1994, 49, 407–410. [Google Scholar] [CrossRef]
- Latimer Junior, G.W.; AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 19th ed.; Plenum Press: New York, NY, USA, 2012. [Google Scholar]
- Szymanski, H.A. Progress in Infrared Spectroscopy; Springer: New York, NY, USA, 1962. [Google Scholar]
- Goormaghtigh, E.; Ruysschaert, J.-M.; Raussens, V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys. J. 2006, 90, 2946–2957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuček, J.; Machala, L.; Ono, S.; Namai, A.; Yoshikiyo, M.; Imoto, K.; Tokoro, H.; Ohkoshi, S.I.; Zbořil, R. Zeta-Fe2O3–A new stable polymorph in iron (III) oxide family. Sci Rep. 2015, 5, 15091. [Google Scholar] [CrossRef] [Green Version]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta(BBA) Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Kulal, P.M.; Dubal, D.P.; Lokhande, C.D.; Fulari, V.J. Chemical synthesis of Fe2O3 thin films for supercapacitor application. J. Alloys Compd. 2011, 509, 2567–2571. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Mazumdar, S. Structural and conformational stability of horseradish peroxidase: Effect of temperature and pH. Biochemistry 2000, 39, 263–270. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, Z.; Ding, Z.; Liu, J. Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation. RSC Adv. 2018, 8, 7269–7279. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, A.; Schuller, D.J.; Meno, K.; Welinder, K.G.; Smith, A.T.; Gajhede, M. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 1998, 37, 8054–8060. [Google Scholar] [CrossRef]
- Xie, T.; Wang, A.; Huang, L.; Li, H.; Chen, Z.; Wang, Q.; Yin, X. Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 2009, 8, 4724–4733. [Google Scholar]
- Pereira, A.F.; de Castro, A.A.; Soares, F.V.; Leal, D.H.S.; da Cunha, E.F.; Mancini, D.T.; Ramalho, T.C. Development of technologies applied to the biodegradation of warfare nerve agents: Theoretical evidence for asymmetric homogeneous catalysis. Chem. Biol. Interact. 2019, 308, 323–331. [Google Scholar] [CrossRef] [PubMed]
- CRamalho, T.; A de Castro, A.; RSilva, D.; Cristina Silva, M.; CCFranca, T.; JBennion, B.; Kuca, K. Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides. Curr. Med. Chem. 2016, 23, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the Δ-FeOOH is available from the authors. |
Experiments | (X1) a | (X2) b | (X3) c | (X4) d |
---|---|---|---|---|
1 | −1 (100) | −1 (4.0) | −1 (30) | −1 (25) |
2 | −1 (100) | 1 (8.0) | −1 (30) | −1 (25) |
3 | 1(500) | −1 (4.0) | −1 (30) | −1 (25) |
4 | 1(500) | 1 (8.0) | −1 (30) | −1 (25) |
5 | −1(100) | −1 (4.0) | 1 (180) | −1 (25) |
6 | −1(100) | 1 (8.0) | 1 (180) | −1 (25) |
7 | 1(500) | −1 (4.0) | 1 (180) | −1 (25) |
8 | 1(500) | 1 (8.0) | 1 (180) | −1 (25) |
9 | −1(100) | −1 (4.0) | −1 (30) | 1 (60) |
10 | −1(100) | 1 (8.0) | −1(30) | 1 (60) |
11 | 1(500) (1/313) | −1 (4.0) | −1 (30) | 1 (60) |
12 | 1(500) | 1 (8.0) | −1 (30) | 1 (60) |
13 | −1(100) | −1 (4.0) | 1(180) | 1 (60) |
14 | −1(100) | 1 (8.0) | 1 (180) | 1 (60) |
15 | 1(500) | −1 (4.0) | 1 (180) | 1 (60) |
16 | 1(500) | −1 (8.0) | 1 (180) | 1 (60) |
Factor | Effects Estimate |
---|---|
Mean/Interc. | 0.371250 |
X1 | −0.578250 |
X2 | 0.712750 |
X3 | −0.022750 |
X4 | 0.422000 |
X1*X2 | −0.566000 |
X1*X3 | 0.038500 |
X1*X4 | −0.257750 |
X2*X3 | −0.035000 |
X2*X4 | 0.392250 |
X3*X4 | 0.113250 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, T.S.; da Rocha, E.P.; Esteves Nogueira, F.G.; Torres, J.A.; Silva, M.C.; Kuca, K.; Ramalho, T.C. Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules 2020, 25, 259. https://doi.org/10.3390/molecules25020259
Tavares TS, da Rocha EP, Esteves Nogueira FG, Torres JA, Silva MC, Kuca K, Ramalho TC. Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules. 2020; 25(2):259. https://doi.org/10.3390/molecules25020259
Chicago/Turabian StyleTavares, Tássia Silva, Eduardo Pereira da Rocha, Francisco Guilherme Esteves Nogueira, Juliana Arriel Torres, Maria Cristina Silva, Kamil Kuca, and Teodorico C. Ramalho. 2020. "Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach" Molecules 25, no. 2: 259. https://doi.org/10.3390/molecules25020259
APA StyleTavares, T. S., da Rocha, E. P., Esteves Nogueira, F. G., Torres, J. A., Silva, M. C., Kuca, K., & Ramalho, T. C. (2020). Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach. Molecules, 25(2), 259. https://doi.org/10.3390/molecules25020259