Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus
Abstract
:1. Introduction
2. Results
2.1. Optimization for Sample Extraction
2.2. Optimization of UFLC Conditions
2.3. Optimization of MS Conditions
2.4. Method Validation
2.5. Quantification of Bioactive Constituents in Various Segments
2.6. Distribution of Bioactive Constituents among Various Segments
3. Discussion
3.1. Selection of Analytes
3.2. Selection of Determination Method
3.3. Quantitative and Distributive Analysis of Bioactive Constituents in Various Segments
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals and Reagents
4.3. Preparation of Standard Solutions
4.4. Preparation of Sample Solutions
4.5. Chromatographic and Mass Spectrometric Conditions
4.6. Validation of the Method
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nishibe, S.; Okabe, K.; Tsukamoto, H.; Sakushima, A.; Hisada, S.; Baba, H.; Akisada, T. Studies on the Chinese crude drug “Forsythiae Fructus.” VI. The structure and antibacterial activity of suspensaside isolated from Forsythia suspensa. Chem. Pharm. Bull. 1982, 30, 4548–4553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, Y.; Rui, J.; Tang, Y.; Satake, M. Antiinflammatory effect of Forsythia suspensa Vahl and its active fraction. Biol. Pharm. Bull. 1997, 20, 861–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The State Pharmacopoeia Commission of P. R. China. Pharmacopoeia of the People’s Repulic of China. Part, I.; China Medical Science and Technology Press: Beijing, China, 2015; pp. 170–171. [Google Scholar]
- Wang, Z.Y.; Xia, Q.; Liu, X.; Liu, W.X.; Huang, W.Z.; Mei, X.; Luo, J.; Shan, M.X.; Lin, R.C.; Zou, D.X.; et al. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol. 2018, 210, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.X.; Xia, Y.G.; Yang, B.Y.; Liang, J.; Zhang, Q.B.; Li, G.Y. A new caffeoyl phenylethanoid glycoside from the unripe fruits of Forsythia suspensa. Chin. J. Nat. Med. 2009, 7, 278–282. [Google Scholar] [CrossRef]
- Zhao, X.W.; Liu, P.Y.; Liu, D.; Sun, S.S.; Li, Z.; Yu, K.X.; Zhang, M.L.; Shi, Q.W. Research progress in structure-activity relationship of flavoniods. Chin. Tradit. Herb. Drugs 2015, 46, 3264–3271. [Google Scholar]
- Zheng, X.H.; Yang, J.; Yang, Y.H. Research progress on pharmacological effects of gallic acid. Chin. Hosp. Pharm. J. 2017, 37, 94–98. [Google Scholar]
- Wang, Y.; Zhao, H.F.; Lin, C.X.; Ren, J.; Zhang, S.Z. Forsythiaside A exhibits anti-inflammatory effects in LPS-stimulated BV2 microglia cells through activation of Nrf2/HO-1 signaling pathway. Neurochem. Res. 2016, 41, 659–665. [Google Scholar] [CrossRef]
- Pan, X.L.; Cao, X.; Li, N.; Xu, Y.M.; Wu, Q.Y.; Bai, J.; Yin, Z.M.; Luo, L.; Lan, L. Forsythin inhibits lipopolysaccharide-induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production. Inflamm. Res. 2014, 63, 597–608. [Google Scholar] [CrossRef]
- Li, H.W.; Wu, J.F.; Zhang, Z.W.; Ma, Y.Y.; Liao, F.F.; Zhang, Y.; Wu, G.J. Forsythoside A inhibits the avian infectious bronchitis virus in cell culture. Phytother. Res. 2011, 25, 338–342. [Google Scholar] [CrossRef]
- Qu, X.Y.; Li, Q.J.; Zhang, H.M.; Zhang, X.J.; Shi, P.H.; Zhang, X.J.; Yang, J.; Zhou, Z.; Wang, S.Q. Protective effects of phillyrin against influenza A virus in vivo. Arch. Pharm. Res. 2016, 39, 998–1005. [Google Scholar] [CrossRef]
- Huang, C.K.; Lin, Y.L.; Su, H.; Ye, D.Q. Forsythiaside protects against hydrogen peroxide-induced oxidative stress and apoptosis in PC12 cell. Neurochem. Res. 2015, 40, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.J.; Hung, T.M.; Min, B.S.; Kim, J.C.; Woo, M.H.; Choi, J.S.; Lee, H.K.; Bae, K. Lignans from the fruit of Forsythia suspensa (Thunb.) Vahl protect high-density lipoprotein during oxidative stress. Biosci. Biotechnol. Biochem. 2008, 72, 2750–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.Y.; Yuan, W.; Zhou, L.; Wang, S.X.; Xie, Y.; Fu, Y.J. Forsythoside A exerts an anti-endotoxin effect by blocking the LPS/TLR4 signaling pathway and inhibiting tregs in vitro. Int. J. Mol. Med. 2017, 40, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, S.Y.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Eight new phenylethanoid glycoside derivatives possessing potential hepatoprotective activities from the fruits of Forsythia suspensa. Fitoterapia 2017, 122, 132–137. [Google Scholar] [CrossRef]
- Zhong, W.T.; Wu, Y.C.; Xie, X.X.; Zhou, X.; Wei, M.M.; Soromou, L.W.; Ci, X.X.; Wang, D.C. Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-κB activation in acute lung injury mice. Fitoterapia 2013, 90, 132–139. [Google Scholar] [CrossRef]
- Ni, Y.; Zhuang, H.; Kokot, S. A high performance liquid chromatography and electrospray ionization mass spectrometry method for the analysis of the natural medicine, Forsythia Suspensa. Anal. Lett. 2013, 47, 102–116. [Google Scholar] [CrossRef]
- Fu, Y.F.; Li, Q.; Bi, K.S. Determination of seven components in Forsythia suspensa by RP-HPLC. Chin. Tradit. Herb. Drugs 2013, 44, 1043–1046. [Google Scholar]
- Lei, J.W.; Zhang, Q.; Xie, C.X.; Duan, X.Y.; Bai, Y. Determination and HPLC fingerprint of Fructus Forsythiae in different collecting seasons. Chin. J. Pharm. 2014, 45, 1181–1185. [Google Scholar]
- Wei, Y.H.; Zhou, A.; Han, R.C.; Yu, N.J.; Guo, J.F. Analysis of forsythin and forsythoside A contents in differently processed Forsythiae Fructus. J. Changchun Univ. Tradit. Chin. Med. 2018, 34, 446–449. [Google Scholar]
- Zhou, W.W.; Liang, Z.T.; Li, P.; Zhao, Z.Z.; Chen, J. Tissue-specific chemical profiling and quantitative analysis of bioactive components of Cinnamomum cassia by combining laser-microdissection with UPLC-Q/TOF-MS. Chem. Cent. J. 2018, 12, 71–79. [Google Scholar] [CrossRef]
- Chen, Q.L.; Liang, Z.T.; Brand, E.; Chen, H.B.; Zhao, Z.Z. Distributive and quantitative analysis of the main active saponins in Panax notoginseng by UHPLC-QTOF/MS combining with fluorescence microscopy and laser microdissection. Planta Med. 2016, 82, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, J.W.; Liu, X.G.; Wu, Q.W.; Li, X.S.; Gao, W.; Wang, H.Y.; Li, P.; Yang, H. Correlation between macroscopic characteristics and tissue-specific chemical profiling of the root of Salvia miltiorrhiza. Phytomedicine 2018, 51, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Q.; Shi, X.W.; Zhang, X.W.; Sheng, X.N.; Zhang, L.T. Simultaneous quantification of 14 bioactive constituents in Forsythia suspensa by liquid chromatography-electrospray ionisation-mass spectrometry. Phytochem. Anal. 2010, 21, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.G.; Yang, B.Y.; Wang, Q.H.; Liang, J.; Wei, Y.H.; Yu, H.D.; Zhang, Q.B.; Kuang, H.X. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Forsythia suspensa extract by HPLC coupled with photodiode array detector. J. Sep. Sci. 2009, 32, 4113–4125. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.L.; Yan, X.J.; Li, C.Y.; Wen, J.; Lu, C.N.; Ren, J.G.; Peng, Y.; Song, S.J. Comparative evaluation of raw and ripe fruits of Forsythia suspensa by HPLC-ESI-MS/MS analysis and anti-microbial assay. J. Chromatogr. Sci. 2017, 55, 451–458. [Google Scholar] [PubMed] [Green Version]
- Wang, Z. Analytical method and strategy for discovery, identification and determination of target multiple compounds in complex matrix samples. Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2016. [Google Scholar]
- Wang, C.C.; Cai, H.; Zhao, H.; Yan, Y.; Shi, J.J.; Chen, S.Y.; Tan, M.X.; Chen, J.L.; Zou, L.S.; Chen, C.H.; et al. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice. J. Pharm. Biomed. Anal. 2018, 161, 464–473. [Google Scholar] [CrossRef]
- Tan, M.X.; Chen, J.L.; Wang, C.C.; Zou, L.S.; Chen, S.Y.; Shi, J.J.; Mei, Y.Q.; Wei, L.F.; Liu, X.H. Quality evaluation of ophiopogonis radix from two different producing areas. Molecules 2019, 24, 3220. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Wu, W.Y.; Sun, G.X.; Wang, D.D.; Hou, J.J.; Yang, W.Z.; Jiang, B.H.; Liu, X.; Guo, D.A. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example. J. Chromatogr. A 2013, 1294, 58–69. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Y.Z.; Zhu, H.B.; Chen, Q.M. Fingerprint profile of active components for Artemisia selengensis Turcz by HPLC–PAD combined with chemometrics. Food Chem. 2011, 125, 1064–1071. [Google Scholar] [CrossRef]
- Vavrek, M.J. A comparison of clustering methods for biogeography with fossil datasets. Peer J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, D.J.; Berger, J.O.; Johannesson, M.; Nosek, B.A.; Wagenmakers, E.J.; Berk, R.; Bollen, K.A.; Brembs, B.; Brown, L.; Camerer, C.; et al. Redefine statistical significance. Nat. Hum. Behav. 2018, 2, 6–10. [Google Scholar] [CrossRef] [PubMed]
- The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Guidelines, Q2 (R1): Validation of Analytical Procedures (Text and Methodology); ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Chen, C.; Liu, Z.X.; Zou, L.S.; Liu, X.H.; Chai, C.; Zhao, H.; Yan, Y.; Wang, C.C. Quality evaluation of Apocyni Veneti Folium from different habitats and commercial herbs based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. Molecules 2018, 23, 573. [Google Scholar] [CrossRef] [Green Version]
No. | Analyte | Formula | tR (min) | MRM Parameters | ||
---|---|---|---|---|---|---|
MRM Transitions (m/z) | DP (V) | CE (eV) | ||||
1 | Gallic acid | C7H6O5 | 2.99 | 169.0/125.0 | −35 | −15 |
2 | Chlorogenic acid | C16H18O9 | 5.61 | 352.8/190.9 | −31 | −26 |
3 | Caffeic acid | C9H8O4 | 6.40 | 179.0/134.6 | −125 | −20 |
4 | Forsythoside B | C34H44O19 | 7.52 | 755.2/160.7 | −60 | −56 |
5 | Forsythoside I | C29H36O15 | 7.62 | 623.2/160.9 | −85 | −50 |
6 | Rutin | C27H30O16 | 7.64 | 609.2/300.1 | −65 | −56 |
7 | p-Coumaric acid | C9H8O3 | 7.80 | 163.0/118.9 | −56 | −19 |
8 | Forsythiaside A | C29H36O15 | 7.82 | 623.2/160.9 | −85 | −50 |
9 | Galuteolin | C21H20O11 | 8.10 | 447.1/285.0 | −50 | −28 |
10 | Ferulic acid | C10H10O4 | 8.31 | 193.0/133.9 | −27 | −24 |
11 | (+)-Pinoresinol-4-O-β-D-glucoside | C26H32O11 | 8.67 | 519.2/357.1 | −160 | −22 |
12 | Astragalin | C21H20O11 | 8.76 | 448.9/287.0 | 22 | 12 |
13 | Quercetin | C15H10O7 | 8.87 | 447.0/301.0 | −165 | −30 |
14 | Hesperidin | C28H34O15 | 9.37 | 609.3/301.0 | −66 | −35 |
15 | Baicalin | C21H18O11 | 11.77 | 445.0/269.0 | −25 | −18 |
16 | (+)-Phillyrin | C27H34O11 | 12.50 | 556.9/309.0 | 130 | 47 |
17 | (−)-Arctiin | C27H34O11 | 12.87 | 556.9/395.1 | 130 | 47 |
18 | Luteolin | C15H10O6 | 13.06 | 285.0/133.0 | −50 | −32 |
19 | Kaempferol | C15H10O6 | 14.76 | 285.0/116.9 | −120 | −36 |
20 | (+)-Pinoresinol | C20H22O6 | 15.38 | 357.1/121.0 | −45 | −28 |
21 | (+)-Phillygenin | C21H24O6 | 15.80 | 371.2/356.0 | −37 | −12 |
No. | Analyte | Regression Equation | r | Liner Range (ng/mL) | LOD (ng/mL) | LOQ (ng/mL) | Precision (RSD, %) | Repeatability (RSD, %) (n = 6) | Stability (RSD, %) (n = 6) | Recovery (%) | Matrix Effect | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-day (n = 6) | Inter-day (n = 9) | Mean | RSD | ||||||||||
1 | Gallic acid | Y = 6740X – 565,000 | 0.9992 | 123.200~1970 | 17.983 | 59.943 | 1.8 | 2.9 | 4.0 | 2.3 | 98.59 | 2.1 | 0.92 |
2 | Chlorogenic acid | Y = 1780X + 11,100 | 0.9996 | 0.556~5560 | 0.111 | 0.371 | 3.6 | 2.8 | 3.8 | 2.8 | 100.9 | 2.4 | 1.06 |
3 | Caffeic acid | Y = 5010X + 23,300 | 0.9993 | 0.799~1598 | 0.126 | 0.420 | 1.4 | 2.9 | 2.6 | 3.5 | 99.99 | 1.8 | 0.95 |
4 | Forsythoside B | Y = 569X + 23,900 | 0.9992 | 2.690~107,600 | 0.359 | 1.196 | 2.1 | 3.7 | 2.2 | 3.7 | 100.3 | 1.2 | 0.93 |
5 | Forsythoside I | Y = 0.813X + 749 | 0.9993 | 424~106,000 | 106.047 | 353.489 | 3.9 | 4.0 | 4.0 | 4.0 | 100.6 | 1.4 | 0.92 |
6 | Rutin | Y = 434X + 56,000 | 0.9990 | 8.720~174,400 | 1.939 | 6.462 | 1.6 | 3.9 | 1.4 | 3.1 | 100.5 | 2.1 | 0.94 |
7 | p-Coumaric acid | Y = 3710X + 3900 | 0.9991 | 0.060~238 | 0.007 | 0.024 | 2.0 | 3.8 | 4.0 | 3.8 | 99.90 | 1.7 | 0.91 |
8 | Forsythiaside A | Y = 0.393X + 1880 | 0.9990 | 504~756,000 | 131.955 | 439.851 | 3.8 | 3.0 | 4.0 | 3.1 | 101.0 | 1.8 | 0.96 |
9 | Galuteolin | Y = 5890X + 319 | 0.9992 | 0.003~3.220 | 0.001 | 0.002 | 2.7 | 3.0 | 3.9 | 3.8 | 100.8 | 2.8 | 1.02 |
10 | Ferulic acid | Y = 482X + 125 | 0.9991 | 0.397~397 | 0.106 | 0.354 | 2.4 | 4.0 | 3.0 | 3.2 | 100.2 | 1.9 | 1.03 |
11 | (+)-Pinoresinol-4-O-β-D-glucoside | Y = 645X + 396,000 | 0.9991 | 5.200~104,000 | 0.574 | 1.913 | 3.9 | 3.9 | 2.3 | 3.6 | 100.1 | 1.4 | 0.97 |
12 | Astragalin | Y = 3970X + 1180 | 0.9993 | 0.180~72 | 0.040 | 0.132 | 1.2 | 3.7 | 3.8 | 3.8 | 100.8 | 1.9 | 1.02 |
13 | Quercetin | Y = 8.23X + 1.39 | 0.9991 | 1.590~381 | 0.381 | 1.270 | 4.0 | 3.2 | 4.0 | 3.7 | 101.9 | 1.7 | 0.98 |
14 | Hesperidin | Y = 7430X – 31,700 | 0.9996 | 4.333~976 | 0.090 | 0.300 | 4.0 | 3.5 | 3.6 | 3.9 | 100.5 | 2.3 | 0.95 |
15 | Baicalin | Y = 5580X + 3590 | 0.9997 | 0.022~22.500 | 0.005 | 0.018 | 2.6 | 4.0 | 3.5 | 4.0 | 100.2 | 0.89 | 1.03 |
16 | (+)-Phillyrin | Y = 1.75X + 272 | 0.9992 | 15.650~78,250 | 3.130 | 10.434 | 4.0 | 3.8 | 3.7 | 3.5 | 99.88 | 1.4 | 1.02 |
17 | (–)-Arctiin | Y = 44.9X + 50.6 | 0.9990 | 0.171~34,200 | 0.034 | 0.114 | 3.6 | 3.5 | 3.9 | 4.0 | 101.6 | 1.5 | 0.97 |
18 | Luteolin | Y = 5360X – 235,000 | 0.9992 | 43.850~4020 | 0.460 | 1.532 | 3.9 | 3.9 | 2.2 | 3.8 | 101.9 | 2.0 | 0.99 |
19 | Kaempferol | Y = 194X + 211 | 0.9992 | 0.102~102 | 0.024 | 0.082 | 3.0 | 3.9 | 3.8 | 1.8 | 99.21 | 3.8 | 0.95 |
20 | (+)-Pinoresinol | Y = 99.6X + 101,000 | 0.9993 | 0.259~13,000 | 0.063 | 0.211 | 2.8 | 3.5 | 3.9 | 4.0 | 100.3 | 2.3 | 1.02 |
21 | (+)-Phillygenin | Y = 0.457X − 342 | 0.9990 | 792~39,600 | 233.710 | 771.250 | 3.9 | 3.2 | 3.9 | 3.6 | 100.7 | 2.6 | 0.97 |
Sample No. | Origin | Locality | Sample No. | Origin | Locality |
---|---|---|---|---|---|
S1 | Shanxi, China | Pingshun | S8 | Shanxi, China | Guxian |
S2 | Shanxi, China | Huguan | S9 | Shanxi, China | Lingchuan |
S3 | Shanxi, China | Anze | S10 | Shaanxi, China | Heyang |
S4 | Shanxi, China | Anze | S11 | Henan, China | Linchuan |
S5 | Shanxi, China | Anze | S12 | Henan, China | Luoyang |
S6 | Shanxi, China | Anze | S13 | Henan, China | Neixiang |
S7 | Shanxi, China | Guxian | S14 | Henan, China | Huixian |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Mei, Y.; Zou, L.; Chen, J.; Tan, M.; Wang, C.; Cai, Z.; Lin, L.; Chai, C.; Yin, S.; et al. Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules 2020, 25, 340. https://doi.org/10.3390/molecules25020340
Wei L, Mei Y, Zou L, Chen J, Tan M, Wang C, Cai Z, Lin L, Chai C, Yin S, et al. Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules. 2020; 25(2):340. https://doi.org/10.3390/molecules25020340
Chicago/Turabian StyleWei, Lifang, Yuqi Mei, Lisi Zou, Jiali Chen, Mengxia Tan, Chengcheng Wang, Zhichen Cai, Liqun Lin, Chuan Chai, Shengxin Yin, and et al. 2020. "Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus" Molecules 25, no. 2: 340. https://doi.org/10.3390/molecules25020340
APA StyleWei, L., Mei, Y., Zou, L., Chen, J., Tan, M., Wang, C., Cai, Z., Lin, L., Chai, C., Yin, S., & Liu, X. (2020). Distribution Patterns for Bioactive Constituents in Pericarp, Stalk and Seed of Forsythiae Fructus. Molecules, 25(2), 340. https://doi.org/10.3390/molecules25020340