Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Compounds Content
2.2. Phytochemical Profile by UPLC-MSE
2.3. In Vitro Antioxidant Activity
2.4. Correlation between Total Phenolic Compounds and Antioxidant Capacity
2.5. NMR Profile
3. Material and Methods
3.1. Standards and Chemicals
3.2. Samples
3.3. Sample Preparation
3.4. Quantification of Total Phenolic Compounds
3.5. Phytochemical Profile Characterization by UPLC-MSE
3.6. Analysis by Nuclear Magnetic Resonance Spectroscopy
3.7. ABTS
3.8. DPPH
3.9. FRAP
3.10. ORAC
3.11. Statistical
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
References
- Ramos, A.S.; Souza, R.O.; Boleti, A.P.D.A.; Bruginski, E.R.; Lima, E.S.; Campos, F.R.; Machado, M.B. Chemical characterization and antioxidant capacity of the araçá-pera Psidium acutangulum: An exotic Amazon fruit. Food Res. Int. 2015, 75, 315–327. [Google Scholar] [CrossRef]
- Cândido, T.L.N.; Silva, M.R.; Agostini-Costa, T.S. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 2015, 177, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Chisté, R.C.; Mercadante, A.Z. Identification and quantification, by HPLC-DAD-MS/MS, of carotenoids and phenolic compounds from the Amazonian fruit Caryocar villosum. J. Agric. Food Chem. 2012, 60, 5884–5892. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Borges, G.D.S.C.; Gonzaga, L.V.; Seraglio, S.K.T.; Olivo, I.S.; Azevedo, M.S.; Nehring, P.; de Gois, J.S.; de Almeida, T.S.; Vitali, L.; et al. Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Res. Int. 2015, 77, 125–131. [Google Scholar] [CrossRef]
- Bataglion, G.A.; da Silva, F.M.A.; Eberlin, M.N.; Koolen, H.H.F. Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Res. Int. 2014, 66, 396–400. [Google Scholar] [CrossRef]
- Virgolin, L.B.; Seixas, F.R.F.; Janzantti, N.S. Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesqui. Agropecu. Bras. 2017, 52, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Luís, E.; Ordóñez-Santos, G.M.; Martínez-Álvarez, A.M.V.-R. Effect of processing on the physicochemical and sensory properties of mammee apple (Mammea americana L.) fruit. Agrociencia 2014, 48, 377–385. [Google Scholar]
- Sun, L.; Liu, J.; Liu, P.; Yu, Y.; Ma, L.; Hu, L. Immunosuppression effect of Withangulatin A from Physalis angulata via heme oxygenase 1-dependent pathways. Process Biochem. 2011, 46, 482–488. [Google Scholar] [CrossRef]
- Hseu, Y.C.; Wu, C.R.; Chang, H.W.; Kumar, K.J.S.; Lin, M.K.; Chen, C.S.; Cho, H.J.; Huang, C.Y.; Huang, C.Y.; Lee, H.Z.; et al. Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis. J. Ethnopharmacol. 2011, 135, 762–771. [Google Scholar] [CrossRef]
- Nunomura, R.C.S.; Oliveira, V.G.; Nunomura, S.M. Characterization of Bergenin in. Amazonia 2009, 20, 1060–1064. [Google Scholar]
- Paz, W.H.P.; de Almeida, R.A.; Braga, N.A.; da Silva, F.M.A.; Acho, L.D.R.; Lima, E.S.; Boleti, A.P.A.; dos Santos, E.L.; Angolini, C.F.F.; Bataglion, G.A.; et al. Remela de cachorro (Clavija lancifolia Desf.) fruits from South Amazon: Phenolic composition, biological potential, and aroma analysis. Food Res. Int. 2018, 109, 112–119. [Google Scholar] [CrossRef] [PubMed]
- de Brabo Sousa, S.H.; de Andrade Mattietto, R.; Campos Chisté, R.; Carvalho, A.V. Phenolic compounds are highly correlated to the antioxidant capacity of genotypes of Oenocarpus distichus Mart. fruits. Food Res. Int. 2018, 108, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonato, C.D.F.A.; Leite, D.O.D.; Pereira, R.C.; Boligon, A.A.; Ribeiro-filho, J.; Rodrigues, F.F.G.; Costa, J.G.M. Chemical analysis and evaluation of antioxidant and antimicrobial activities of fruit fractions of Mauritia flexuosa L.f. (Arecaceae). PeerJ 2018, 6, e5991. [Google Scholar] [PubMed] [Green Version]
- Barros, R.G.C.; Andrade, J.K.S.; Denadai, M.; Nunes, M.L.; Narain, N. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 2017, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Péroumal, A.; Adenet, S.; Rochefort, K.; Fahrasmane, L.; Aurore, G. Variability of traits and bioactive compounds in the fruit and pulp of six mamey apple (Mammea americana L.) accessions. Food Chem. 2017, 234, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.I.; Da Silva Pinto, M.; De Souza Schmidt Gonçalves, A.E.; Lajolo, F.M. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; de Deus Souza Carneiro, J. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador pacific OCEAN. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-jimenez, J.; Neveu, V.; Medina-remo, A.; Manach, C.; Knox, C.; Eisner, R.; Hiri, N.M.; Garcı, P.; Wishart, D.S.; et al. Database Update Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Ferreira, I.C.F.R. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- da Silva, C.P.; Freitas, R.A.M.S.; Sampaio, G.R.; Santos, M.C.B.; do Nascimento, T.P.; Cameron, L.C.; Simões, M.; Arêas, J.A.G. Identification and action of phenolic compounds of Jatobá-do-cerrado (Hymenaea stignocarpa Mart.) on α-amylase and α-glucosidase activities and flour effect on glycemic response and nutritional quality of breads. Food Res. Int. 2019, 116, 1076–1083. [Google Scholar] [CrossRef]
- Cruz-Reys, A.; Chavarin, C.; Arias, M.P.C.; Taboada, J.; Jímenez, E. The Molluscacide activity of piquerol A isolated from Piqueria trinervia (Compositae) on 8 species of pulmonate snails. Memórias Inst. Oswaldo Cruz 1989, 84, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Medina, S.; Collado-González, J.; Ferreres, F.; Londoño-Londoño, J.; Jiménez-Cartagena, C.; Guy, A.; Durand, T.; Galano, J.M.; Gil-Izquierdo, A. Quantification of phytoprostanes–bioactive oxylipins–and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem. 2017, 229, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography-mass spectrometry approaches. Food Chem. 2014, 163, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Mezni, F.; Slama, A.; Ksouri, R.; Hamdaoui, G.; Khouja, M.L.; Khaldi, A. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chem. 2018, 257, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Black, C.A.; Parker, M.; Siebert, T.E.; Capone, D.L.; Francis, I.L. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K. Levels of terpenoids, mangiferin and phenolic acids in the pulp and peel of ripe mango fruit influenced by pre-harvest spray application of FeSO4 (Fe2+), MgSO4 (Mg2+) and MnSO4 (Mn2+). Food Chem. 2018, 256, 71–76. [Google Scholar] [CrossRef]
- Wu, S.; Dastmalchi, K.; Long, C.; Kennelly, E.J. Metabolite Pro fi ling of Jaboticaba (Myrciaria cauli fl ora) and Other Dark-Colored Fruit Juices. J. Agric. Food Chem. 2012, 60, 7513–7525. [Google Scholar] [CrossRef]
- Choi, J.; Shin, K.M.; Park, H.J.; Jung, H.J.; Kim, H.J.; Lee, Y.S.; Rew, J.H.; Lee, K.T. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin. Planta Med. 2004, 70, 1027–1032. [Google Scholar] [CrossRef]
- Freitas, F.; Avio, A.; de Araújo, R.C.; Soares, E.R.; Nunomura, R.C.S.; Silva, F.M.A.; da Silva, S.R.S.; da Souza, A.Q.L.; de Souza, A.D.L.; de Franco-Montalbán, F.; et al. Biological evaluation and quantitative analysis of antioxidant compounds in pulps of the Amazonian fruits bacuri (Platonia insignis Mart), ing a (Inga edulis Mart), and uchi (Sacoglottis uchi Huber) by UHPLC-ESI-MS/MS Fl. J. Food Biochem. 2018, 42, e12455. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; Souza, V.R.; de Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Moo-Huchin, V.M.; Moo-Huchin, M.I.; Estrada-León, R.J.; Cuevas-Glory, L.; Estrada-Mota, I.A.; Ortiz-Vázquez, E.; Betancur-Ancona, D.; Sauri-Duch, E. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem. 2015, 166, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Mamede, R.; Rufino, M.; de Brito, E.; Alves, R. Amazonian Native Palm Fruits as Sources of Antioxidant Bioactive Compounds. Antioxidants 2015, 4, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Dávalos, A.; Carmem, G.-C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC—Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Re, R.; Pellegreni, N.; Proeggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kylli, P.; Nousiainen, P.; Biely, P.; Sipilã, J.; Tenkanen, M.; Heinonen, M. Antioxidant Potential of Hydroxycinnamic Acid Glycoside Esters. J. Agric. Food Chem. 2008, 56, 4797–4805. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Pekal, A. Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. Anal. Methods 2013, 5, 4288–4295. [Google Scholar] [CrossRef]
- Morales, J.C.; Lucas, R. Structure—Activity Relationship of Phenolic Antioxidants and Olive Components; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780123744203. [Google Scholar]
- Velika, B.; Kron, I. Original Article Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radic. Antioxid. 2012, 2, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Pasari, L.P.; Khurana, A.; Anchi, P.; Aslam Saifi, M.; Annaldas, S.; Godugu, C. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomed. Pharmacother. 2019, 112, 108629. [Google Scholar] [CrossRef]
- Swanson, B.G. Tannins and Polyphenols; Elsevier: Amsterdam, The Netherlands, 2003; p. 5729. [Google Scholar]
- Cidade, H.; Rocha, V.; Palmeira, A.; Marques, C.; Tiritan, M.; Ferreira, H.; Lobo, J.S.; Almeida, I.F.; Sousa, M.E.; Pinto, M. In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. Arab. J. Chem. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Bochkov, D.V.; Sysolyatin, S.V.; Kalashnikov, A.I.; Surmacheva, I.A. Shikimic acid: Review of its analytical, isolation, and purification techniques from plant and microbial sources. J. Chem. Biol. 2012, 5, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11st ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C.; et al. Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef] [Green Version]
- Solas, M.; Puerta, E.J.; Ramirez, M. Treatment Options in Alzheimer’s Disease: The GABA Story. Curr. Pharm. Des. 2015, 21, 4960–4971. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.V.L. Physalis Angulata Estimula Proliferação de Células-Tronco Neurais do Giro Denteado Hipocampal de Camundongos Adultos; Universidade Federal do Pará: Belém, Brazil, 2013. [Google Scholar]
- Giorgetti, M.; Negri, G. Plants from Solanaceae family with possible anxiolytic effect reported on 19th century’s Brazilian medical journal. Rev. Bras. Farmacogn. 2011, 21, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Masoero, F.; Trevisan, M.; Lucini, L. Evaluation of phenolic profile and antioxidant capacity in gluten-free flours. Food Chem. 2017, 228, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.M.C.; da Silva Lima, L.R.; Nascimento, F.R.; do Nascimento, T.P.; Cameron, L.C.; Ferreira, M.S.L. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res. Int. 2019, 124, 118–128. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for Hydrophilic and Lipophilic Antioxidant Capacity (oxygen radical absorbance capacity (ORAC FL)) of Plasma and Other Biological and Food Samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds (%) | Mamey Apple | Camapu | Uxi | |||
---|---|---|---|---|---|---|
W | E | W | E | W | E | |
Phenolic Acid | 43 (20.57%) | 37 (19.68%) | 44 (24.04%) | 40 (21.51%) | 38 (23.17%) | 35 (21.21%) |
Flavonoids | 36 (17.22%) | 30 (15.96%) | 33 (18.03%) | 29 (15.59%) | 24 (14.63%) | 27 (16.36%) |
Chalcones | 2 (0.96%) | 2 (1.06%) | 2 (1.09%) | 2 (1.08%) | 3 (1.83%) | 3 (1.82%) |
Coumarins | 16 (7.66%) | 15 (7.98%) | 14 (7.65%) | 14 (7.53%) | 8 (4.88) | 9 (5.45%) |
Others phenolic compounds | 27 (12.92%) | 25 (13.30%) | 23 (12.57%) | 30 (16.13%) | 20 (12.20%) | 26 (15.76%) |
Amino acid related compounds | 17 (8.13%) | 14 (7.45%) | 17 (9.29%) | 20 (10.75%) | 18 (10.98%) | 15 (9.09%) |
Fatty acids related compounds | 22 (10.53%) | 22 (11.70%) | 11 (6.01%) | 12 (6.45%) | 14 (8.54%) | 15 (9.09%) |
Terpenoids | 46 (22.01%) | 43 (22.87%) | 39 (21.31%) | 39 (20.97%) | 39 (23.78%) | 35 (21.21%) |
Total of compounds | 209 (100%) | 188 (100%) | 183 (100%) | 186 (100%) | 164 (100%) | 165 (100%) |
Possible Identifications | CAS | m/z Exp | RT (min) | Fragment m/z | Error (ppm) | Mamey | Camapu | Uxi | |||
---|---|---|---|---|---|---|---|---|---|---|---|
W | E | W | E | W | E | ||||||
Genistin | 529-59-9 | 431.0978 | 4.55 | 133.0294 (10.20) | −1.23 | − | − | − | − | X | X |
Eriodictiol I | 552-58-9 | 287.0552 | 3.05 | 81.0338 (5.46); 93.0339 (78.57); 119.0496 (100); 155.0342 (10.19); 163.0395 (60.20) | −2.86 | X | X | − | − | − | − |
Hesperidin | 520-26-3 | 609.1875 | 0.43 | 79.0188 (0.66); 369.0671 (50.27); 488.1618 (10.04) | 8.37 | X | X | X | X | X | X |
Narirutin | 14259-46-2 | 579.1775 | 0.43 | 72.9924 (78.62); 79.0188 (0.58); 117.0187 (26.50); 135.0294 (87.65); 357.1033 (3.92); 369.0671 (44.06); 535.1514 (21.08) | 9.66 | X | X | X | X | X | X |
Pomiferin I | 572-03-2 | 419.1505 | 2.62 | nd | 1.21 | X | X | X | X | X | X |
Ononin | 486-62-4 | 429.1170 | 2.02 | nd | −4.89 | X | X | X | X | ||
Mammeisin | 18483-64-2 | 405.1677 | 4.01 | 109.0653 (0.46); 154.0615 (0.72) | −7.30 | X | X | ||||
Quercitrin | 522-12-3 | 447.0923 | 3.48 | 151.0030 (2.20); 285.0393 (5.36) | −2.09 | X | X | X | |||
Quercetin 3-galactoside | 482-36-0 | 463.0875 | 3.47 | 151.0030 (2.97); 255.0291 (5.58); 271.0241 (16.99); 285.0393 (7.25); 300.0266 (31.67) | −1.44 | X | X | X | X | X | X |
Kaempferol I | 520-18-3 | 285.0396 | 4.90 | nd | −2.70 | X | X | X | |||
Dihydroquercetin | 480-18-2 | 303.0505 | 1.42 | 147.0120 (100) | −1.65 | X | X | ||||
Luteoforol | 24897-98-1 | 289.0733 | 0.56 | 109.0289 (12.30) | 5.54 | X | X | X | X | X | X |
Assay | Mamey Apple | Camapu | Uxi | |||
---|---|---|---|---|---|---|
Aqueous | Ethanolic | Aqueous | Ethanolic | Aqueous | Ethanolic | |
ABTS (μmol Trolox g−1) | 263.67 ± 23.90 a | 937.66 ± 218.49 b | 432.74 ± 16.17 c | 419.43 ± 18.55 c | 271.86 ± 22.14 a | 1602.7 ± 30.16 d |
DPPH (μmol Trolox g−1) | 336.60 ± 3.05 a | 1168.42 ± 218.56 b | 386.24 ± 116.99 c | 705.77 ± 100.74 d | 46.95 ± 17.17 e | 509.27 ± 26.95 f |
FRAP (µmol ferrous sulphate g−1) | 564.18 ± 18.90 a | 1381.13 ± 189.95 b | 970.60 ± 28.92 c | 1183.98 c ± 46.62 b | 376.66 ± 1.81 d | 448.68 ± 41.97 e |
ORAC (µmol Trolox g−1) | 5.17 ± 0.56 a | 8.88 ± 0.52 b | 12.30 ± 1.15 c | 11.15 ± 0.42 c | 14.33 ± 1.36 d | 15.04 ± 0.84 d |
Fruit | Compound | δ ¹H (ppm) | Multiplicity (J) | Mass (mg/g) |
---|---|---|---|---|
Mamey Apple | Formic acid | 8.44 | s | 0.01 ± 0.00 |
Shikimic acid | 6.48 | m | 0.11 ± 0.01 | |
Sucrose | 5.42 | d (3.88) | 1.51 ± 0.11 | |
α-glucose | 5.22 | d (3.76) | 0.49 ± 0.02 | |
β-glucose | 4.64 | d (7.94) | 0.40 ± 0.02 | |
Fructose | 4.10 | d (3.42) | 0.85 ± 0.04 | |
Choline | 3.19 | s | 0.01 ± 0.00 | |
Ethanol | 1.18 | t (7.09) | 0.01 ± 0.00 | |
Camapu | Formic acid | 8.44 | s | 0.01 ± 0.00 |
Sucrose | 5.42 | d (3.91) | 4.09 ± 0.46 | |
α-glucose | 5.23 | d (3.73) | 0.04 ± 0.01 | |
β-glucose | 4.65 | d (7.92) | 0.04 ± 0.01 | |
Fructose | 4.11 | d (3.42) | 0.12 ± 0.01 | |
Choline | 3.20 | s | 0.01 ± 0.00 | |
Aspartic acid | 2.82 | dd (17.4; 3.78) | 0.04 ± 0.01 | |
Acetic acid | 1.94 | S | 0.01 ± 0.00 | |
GABA | 1.89 | quin (7.44) | 0.02 ± 0.01 | |
Alanine | 1.47 | d (7.2) | 0.02 ± 0.01 | |
Lactic acid | 1.33 | d (6.68) | 0.01 ± 0.00 | |
Ethanol | 1.18 | t (7.09) | 0.02 ± 0.001 | |
Valine | 1.04 | d (7.07) | 0.01 ± 0.00 | |
Uxi | Linoleic acid | 5.32 | M | 1.79 ± 0.11 |
Acetic acid | 1.94 | S | 0.16 ± 0.01 | |
Alanine | 1.45 | d (7.20) | 0.04 ± 0.01 | |
Ethanol | 1.16 | t (7.10) | 0.15 ± 0.02 | |
Valine | 1.05 | d (7.05) | 0.05 ± 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, L.G.B.; Montenegro, J.; Abreu, J.P.d.; Santos, M.C.B.; Nascimento, T.P.d.; Santos, M.d.S.; Ferreira, A.G.; Cameron, L.C.; Ferreira, M.S.L.; Teodoro, A.J. Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules 2020, 25, 342. https://doi.org/10.3390/molecules25020342
Lima LGB, Montenegro J, Abreu JPd, Santos MCB, Nascimento TPd, Santos MdS, Ferreira AG, Cameron LC, Ferreira MSL, Teodoro AJ. Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules. 2020; 25(2):342. https://doi.org/10.3390/molecules25020342
Chicago/Turabian StyleLima, Larissa Gabrielly Barbosa, Julia Montenegro, Joel Pimentel de Abreu, Millena Cristina Barros Santos, Talita Pimenta do Nascimento, Maiara da Silva Santos, Antônio Gilberto Ferreira, Luiz Claudio Cameron, Mariana Simões Larraz Ferreira, and Anderson Junger Teodoro. 2020. "Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi)" Molecules 25, no. 2: 342. https://doi.org/10.3390/molecules25020342
APA StyleLima, L. G. B., Montenegro, J., Abreu, J. P. d., Santos, M. C. B., Nascimento, T. P. d., Santos, M. d. S., Ferreira, A. G., Cameron, L. C., Ferreira, M. S. L., & Teodoro, A. J. (2020). Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules, 25(2), 342. https://doi.org/10.3390/molecules25020342