Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vivo CHX and OCT Transformation
2.1.1. Chlorhexidine
2.1.2. Octenidine
2.2. Extracellular In Vitro Transformation
2.2.1. Chlorhexidine
2.2.2. Octenidine
2.3. Identification of Metabolites
2.3.1. Chlorhexidine
2.3.2. Octenidine
3. Materials and Methods
3.1. Chemicals
3.2. Cultivation of Organisms and Degradation Tests
3.2.1. Fungal Cultivation
3.2.2. In Vivo Transformation
3.2.3. In Vitro Transformation with Concentrated Extracellular Liquids
3.3. Enzyme Activities
3.4. Chemical Analyses
3.4.1. Quantitative Analyses
3.4.2. Identification of Metabolites
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Usage of Mouthwash/dental Rinse in the U.S. 2011–2023. Available online: https://www.statista.com/statistics/286902/usage-mouthwash-dental-rinse-us-trend/ (accessed on 29 November 2019).
- Ostman, M.; Lindberg, R.H.; Fick, J.; Bjorn, E.; Tysklind, M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017, 115, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Cesen, M.; Heath, D.; Krivec, M.; Kosmrlj, J.; Kosjek, T.; Heath, E. Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environ. Pollut. 2018, 242, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, F.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Yu, Z.G.; Zhu, M.Y.; Shen, L.Q. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Sci. Total Environ. 2015, 518, 352–362. [Google Scholar] [CrossRef]
- Fortunato, M.S.; Baroni, S.; Gonzalez, A.J.; Roncancio, J.D.A.; Papalia, M.; Martinefsky, M.; Tripodi, V.; Planes, E.; Gallego, A.; Korol, S.E. Biodegradability of Disinfectants in Surface Waters from Buenos Aires: Isolation of an Indigenous Strain Able to Degrade and Detoxify Benzalkonium Chloride. Water Air Soil Pollut. 2018, 229, 120. [Google Scholar] [CrossRef]
- Hu, A.Y.; Ju, F.; Hou, L.Y.; Li, J.W.; Yang, X.Y.; Wang, H.J.; Mulla, S.I.; Sun, Q.; Burgmann, H.; Yu, C.P. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ. Microbiol. 2017, 19, 4993–5009. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Tandukar, M.; Pavlostathis, S.G.; Chain, P.S.G.; Konstantinidis, K.T. Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ. Microbiol. 2013, 15, 2850–2864. [Google Scholar] [CrossRef]
- Keerthisinghe, T.P.; Nguyen, L.N.; Kwon, E.E.; Oh, S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019, 237, 629–635. [Google Scholar] [CrossRef]
- Braoudaki, M.; Hilton, A.C. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E-coli O157. FEMS Microbiol. Lett. 2004, 235, 305–309. [Google Scholar] [CrossRef]
- Tandukar, M.; Oh, S.; Tezel, U.; Konstantinidis, K.T.; Pavlostathis, S.G. Long-Term Exposure to Benzalkonium Chloride Disinfectants Results in Change of Microbial Community Structure and Increased Antimicrobial Resistance. Environ. Sci. Technol. 2013, 47, 9730–9738. [Google Scholar] [CrossRef]
- Michalíková, K.; Linhartová, L.; Ezechiáš, M.; Cajthaml, T. Assessment of agonistic and antagonistic properties of widely used oral care antimicrobial substances toward steroid estrogenic and androgenic receptors. Chemosphere 2019, 217, 534–541. [Google Scholar] [CrossRef]
- Ostman, M.; Fick, J.; Tysklind, M. Detailed mass flows and removal efficiencies for biocides and antibiotics in Swedish sewage treatment plants. Sci. Total Environ. 2018, 640, 327–336. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Oh, S. Impacts of antiseptic cetylpyridinium chloride on microbiome and its removal efficiency in aerobic activated sludge. Int. Biodeterior. Biodegrad. 2019, 137, 23–29. [Google Scholar] [CrossRef]
- Kido, Y.; Kodama, H.; Uraki, F.; Uyeda, M.; Tsuruoka, M.; Shibata, M. Microbial-degradation of disinfectants. 2. Complete degradation of chlorhexidine. Jpn. J. Toxicol. Environ. Health 1988, 34, 97–101. [Google Scholar] [CrossRef]
- Uyeda, M.; Shiosaki, T.; Yokomizo, K.; Suzuki, K.; Uraki, F.; Tanaka, T.; Kido, Y. Microbial degradation of disinfectants, structures of chlorhexidine degradation intermediates, CHDI-B, CHDI-BR and CHDI-D, produced by Pseudomonas sp strain No A-3. Jpn. J. Toxicol. Environ. Health 1996, 42, 121–126. [Google Scholar] [CrossRef]
- Assadian, O. Octenidine dihydrochloride: Chemical characteristics and antimicrobial properties. J. Wound Care 2016, 25, S3–S6. [Google Scholar] [CrossRef] [Green Version]
- Čvančarová, M.; Křesinová, Z.; Filipová, A.; Covino, S.; Cajthaml, T. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere 2012, 88, 1317–1323. [Google Scholar] [CrossRef]
- Šrédlová, K.; Škrob, Z.; Filipová, A.; Mašín, P.; Holecová, J.; Cajthaml, T. Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. Water Res. 2020, 170, 115274. [Google Scholar] [CrossRef]
- Covino, S.; Svobodová, K.; Křesinová, Z.; Petruccioli, M.; Federici, F.; D’Annibale, A.; Čvančarová, M.; Cajthaml, T. In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour. Technol. 2010, 101, 3004–3012. [Google Scholar] [CrossRef]
- Cajthaml, T.; Erbanová, P.; Kollmann, A.; Novotný, C.; Šašek, V.; Mougin, C. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 2008, 53, 289–294. [Google Scholar] [CrossRef]
- Muzikář, M.; Křesinová, Z.; Svobodová, K.; Filipová, A.; Čvančarová, M.; Cajthamlová, K.; Cajthaml, T. Biodegradation of chlorobenzoic acids by ligninolytic fungi. J. Hazard. Mater. 2011, 196, 386–394. [Google Scholar] [CrossRef]
- Karakaya, P.; Christodoulatos, C.; Koutsospyros, A.; Balas, W.; Nicolich, S.; Sidhoum, M. Biodegradation of the High Explosive Hexanitrohexaazaisowurtzitane (CL-20). Int. J. Environ. Res. Public Health 2009, 6, 1371–1392. [Google Scholar] [CrossRef]
- Dao, A.T.N.; Vonck, J.; Janssens, T.K.S.; Dang, H.T.C.; Brouwer, A.; de Boer, T.E. Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ind. Crops Prod. 2019, 128, 153–161. [Google Scholar] [CrossRef]
- Cajthaml, T. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: Mechanisms involved in the degradation. Environ. Microbiol. 2015, 17, 4822–4834. [Google Scholar] [CrossRef]
- Cajthaml, T.; Křesinová, Z.; Svobodová, K.; Möder, M. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere 2009, 75, 745–750. [Google Scholar] [CrossRef]
- Cajthaml, T.; Svobodová, K. Biodegradation of aromatic pollutants by ligninolytic fungal strains. In Microbial Degradation of Xenobiotics; Singh, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 291–316. [Google Scholar]
- Křesinová, Z.; Möeder, M.; Ezechiáš, M.; Svobodová, K.; Cajthaml, T. Mechanistic Study of 17 alpha-Ethinylestradiol Biodegradation by Pleurotus ostreatus: Tracking of Extracelullar and Intracelullar Degradation Mechanisms. Environ. Sci. Technol. 2012, 46, 13377–13385. [Google Scholar] [CrossRef]
- Sun, K.; Huang, Q.G.; Gao, Y.Z. Laccase-Catalyzed Oxidative Coupling Reaction of Triclosan in Aqueous Solution. Water Air Soil Pollut. 2016, 227, 358. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, H.M.N.; Hu, H.B.; Zhang, X.H. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. Res. 2017, 24, 7035–7041. [Google Scholar] [CrossRef]
- Baborová, P.; Möder, M.; Baldrián, P.; Cajthamlová, K.; Cajthaml, T. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 2006, 157, 248–253. [Google Scholar] [CrossRef]
- Stella, T.; Covino, S.; Křesinová, Z.; D’Annibale, A.; Petruccioli, M.; Čvančarová, M.; Cajthaml, T. Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. J. Hazard. Mater. 2013, 260, 975–983. [Google Scholar] [CrossRef]
- Novotný, C.; Erbanová, P.; Cajthaml, T.; Rothschild, N.; Dosoretz, C.; Sasek, V. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biot. 2000, 54, 850–853. [Google Scholar] [CrossRef]
- Svobodová, K.; Erbanová, P.; Sklenář, J.; Novotný, C. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia Microbiol. 2006, 51, 573–578. [Google Scholar] [CrossRef]
- Kasinath, A.; Novotny, C.; Svobodová, K.; Patel, K.C.; Šašek, V. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb. Technol. 2003, 32, 167–173. [Google Scholar] [CrossRef]
- Havlíková, L.; Matysová, L.; Nováková, L.; Hájkova, R.; Solich, P. HPLC determination of chlorhexidine gluconate and p-chloroaniline in topical ointment. J. Pharm. Biomed. 2007, 43, 1169–1173. [Google Scholar] [CrossRef]
- Dynes, J.J.; Lawrence, J.R.; Korber, D.R.; Swerhone, G.D.W.; Leppard, G.G.; Hitchcock, A.P. Quantitative mapping of chlorhexidine in natural river biofilms. Sci. Total Environ. 2006, 369, 369–383. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Zhu, B.; Swerhone, G.D.W.; Topp, E.; Roy, J.; Wassenaar, L.I.; Rema, T.; Korber, D.R. Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. Appl. Environ. Microb. 2008, 74, 3541–3550. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Murayama, S.; Tuda, N.; Nishiyama, M.; Nakagawa, K.; Matsuo, Y.; Isohama, Y.; Kido, Y. Microbial degradation of disinfectants. a new chlorhexidine degradation intermediate (CHDI), CHDI-C, produced by Pseudomonas sp Strain No. A-3. J. Health Sci. 2005, 51, 357–361. [Google Scholar] [CrossRef] [Green Version]
- Szostak, K.; Czogalla, A.; Przybylo, M.; Langner, M. New lipid formulation of octenidine dihydrochloride. J. Lipos Res. 2018, 28, 106–111. [Google Scholar] [CrossRef]
- Kobakhidze, A.; Elisashvili, V.; Corvini, P.F.X.; Čvančarová, M. Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotechnol. 2018, 43, 44–52. [Google Scholar] [CrossRef]
- Asgher, M.; Ramzan, M.; Bilal, M. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin. J. Catal. 2016, 37, 561–570. [Google Scholar] [CrossRef]
- Pointing, S.B. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biot. 2001, 57, 20–33. [Google Scholar]
- Tanaka, T.; Ishii, M.; Nakano, S.; Mori, Y.; Yano, Y.; Iijima, T.; Takeda, K.; Kido, Y. Microbial degradation of disinfectants: Two new aromatic degradation products of chlorhexidine, chlorhexidine aromatic degradation product (CHADP)-4 and CHADP6, produced by Pseudomonas sp strain No. A-3. J. Health Sci. 2006, 52, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.; Cheung, A.P. New stability-indicating high performance liquid chromatography assay and proposed hydrolytic pathways of chlorhexidine. J. Pharm. Biomed. 1996, 14, 1327–1334. [Google Scholar] [CrossRef]
- Zong, Z.; Kirsch, L.E. Studies on the Instability of Chlorhexidine, Part I: Kinetics and Mechanisms. J. Pharm. Sci. 2012, 101, 2417–2427. [Google Scholar] [CrossRef]
- Matsumura, E.; Yamamoto, E.; Numata, A.; Kawano, T.; Shin, T.; Murao, S. Structures of the laccase-catalyzed oxidation-products of hydroxy-benzoic acids in the presence of ABTS (2,2’-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)). Agric. Biol. Chem. Tokyo 1986, 50, 1355–1357. [Google Scholar] [CrossRef]
- Dejong, E.; Cazemier, A.E.; Field, J.A.; Debont, J.A.M. Physiological-role of chlorinated aryl alcohols biosynthesized de-novo by the white-rot fungus Bjerkandera sp strain BOS55. Appl. Environ. Microb. 1994, 60, 271–277. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds CHX and OCT are available from the authors. |
Rt [min] | Suggested Structure | Theoretical Mass (Monois.) m/z | Mass Spectra Characteristics (ESI+) m/z (Intensity, %) |
---|---|---|---|
CHX 4.8 | 505.2105 253.1089 | 253.2 (100); 254.1 (98); 255.1 (29); 505.2 (31); 507.1 (22); 509.1 (5); 336.1 (20); 338.2 (7); 319 (14) | |
5.3 | 515.1584 258.0829 | 258.2 (100); 259.0 (70); 260.0 (13); 515.2 (59.7); 517.1 (44); 519.1 (9.7); 346.0 (6.2); 348.1 (4.9); 498.0 (5.4); 500.1 (3.7); 502.1 (1) | |
OCT 7.5 | 551.5047 275.7524 | 276.3 (100); 551.4 (17.6); 345.4 (1.6) | |
5.9 | 439.3795 220.1934 | 220.2 (100); 439.4 (13.7); 345.3 (3.1) | |
6.9 | 567.4996 284.2534 | 284.2 (100); 230.3 (459) (46.7); 488.2 (4.2); 459.5 (2.7); 567.3 (2.1); 276.2 (1) | |
7.1 | 565.4840 283.2455 | 283.2 (100); 565.3 (5.4); 275.3 (4.6); 269.3 (3.9); 220.7 (1.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linhartová, L.; Michalíková, K.; Šrédlová, K.; Cajthaml, T. Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules 2020, 25, 400. https://doi.org/10.3390/molecules25020400
Linhartová L, Michalíková K, Šrédlová K, Cajthaml T. Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules. 2020; 25(2):400. https://doi.org/10.3390/molecules25020400
Chicago/Turabian StyleLinhartová, Lucie, Klára Michalíková, Kamila Šrédlová, and Tomáš Cajthaml. 2020. "Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi" Molecules 25, no. 2: 400. https://doi.org/10.3390/molecules25020400
APA StyleLinhartová, L., Michalíková, K., Šrédlová, K., & Cajthaml, T. (2020). Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules, 25(2), 400. https://doi.org/10.3390/molecules25020400