Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Nitrogen Depletion on Growth
2.1.1. Dry Weight
2.1.2. Growth Rate and Inhibition
2.2. Chemical Composition
2.2.1. Protein
2.2.2. Total Carbohydrates
2.2.3. Pigments
2.2.4. Lipid Content
2.2.5. Fatty Acids and Biodiesel Characteristics
3. Materials and Methods
3.1. Microalgal Strain and Growth Conditions
3.2. Growth Measurements
3.3. Biochemical Analysis
3.3.1. Proteins and Carbohydrates
3.3.2. Pigments
3.3.3. Lipid Extraction and Determination
3.4. Statistical Analysis
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nayak, M.; Suh, W.I.; Chang, Y.K.; Lee, B. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 2019, 276, 110–118. [Google Scholar] [CrossRef]
- Almutairi, A.W. Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina. Environ. Sci. Pollut. Res. 2020, 27, 32296–32303. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Yahya, N.A.; Suhaimi, N.; Kaha, M.; Hara, H.; Zakaria, Z.; Sugiura, N.; Othman, N.A.; Iwamoto, K. Lipid production enhancement in tropically isolated microalgae by azide and its effect on fatty acid composition. J. Appl. Phycol. 2018, 30, 3063–3073. [Google Scholar] [CrossRef]
- Yu, S.J.; Hu, H.; Zheng, H.; Wang, Y.Q.; Pan, S.B.; Zeng, R.J. Effect of different phosphorus concentrations on biodiesel production from Isochrysis zhangjiangensis under nitrogen sufficiency or deprivation condition. Appl. Microbiol. Biotechnol. 2019, 103, 5051–5059. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Abomohra, A.E.-F.; Jin, W.; Tu, R.; Han, S.-F.; Eid, M.; Eladel, H. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renew. Sustain. Energy Rev. 2016, 64, 596–606. [Google Scholar] [CrossRef]
- Abomohra, A.; Jin, W.; El-Sheekh, M. Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Convers. Manag. 2016, 108, 23–29. [Google Scholar] [CrossRef]
- Hopkins, T.C.; Sullivan Graham, E.J.; Schwilling, J.; Ingram, S.; Gómez, S.M.; Schuler, A.J. Effects of salinity and nitrogen source on growth and lipid production for a wild algal polyculture in produced water media. Algal Res. 2019, 38. [Google Scholar] [CrossRef]
- Pugkaew, W.; Meetam, M.; Yokthongwattana, K.; Leeratsuwan, N.; Pokethitiyook, P. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. J. Appl. Phycol. 2018, 31, 969–979. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Duc, P.A.; Mathimani, T.; Pugazhendhi, A. Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatal. Agric. Biotechnol. 2019, 17, 184–188. [Google Scholar] [CrossRef]
- Gumbi, S.T.; Majeke, B.M.; Olaniran, A.O.; Mutanda, T. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats. Appl. Biochem. Biotechnol. 2017, 182, 382–399. [Google Scholar] [CrossRef] [PubMed]
- Bharte, S.; Desai, K. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. Environ. Sci. Pollut. Res. Int. 2019, 26, 3492–3500. [Google Scholar] [CrossRef]
- Smith, R.T.; Gilmour, D.J. The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii. Algal Res. 2018, 31, 122–137. [Google Scholar] [CrossRef]
- Almutairi, A.W.; El-Sayed, A.E.-K.B.; Reda, M.M. Combined effect of salinity and pH on lipid content and fatty acid composition of Tisochrysis lutea. Saudi J. Biol. Sci. 2020. [Google Scholar] [CrossRef]
- Almarashi, J.Q.M.; El-Zohary, S.E.; Ellabban, M.A.; Abomohra, A.E.-F. Enhancement of lipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Convers. Manag. 2020, 204, 112314. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; El-Naggar, A.H.; Alaswad, S.O.; Elsayed, M.; Li, M.; Li, W. Enhancement of biodiesel yield from a halophilic green microalga isolated under extreme hypersaline conditions through stepwise salinity adaptation strategy. Bioresour. Technol. 2020, 310, 123462. [Google Scholar] [CrossRef]
- Deconinck, N.; Muylaert, K.; Ivens, W.; Vandamme, D. Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Res. 2018, 31, 469–477. [Google Scholar] [CrossRef]
- Gerardo, M.L.; Van Den Hende, S.; Vervaeren, H.; Coward, T.; Skill, S.C. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Res. 2015, 11, 248–262. [Google Scholar] [CrossRef]
- Koutra, E.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends Biotechnol. 2018, 36, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Laurens, L.M.L.; Markham, J.; Templeton, D.W.; Christensen, E.D.; Van Wychen, S.; Vadelius, E.W.; Chen-Glasser, M.; Dong, T.; Davis, R.; Pienkos, P.T. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ. Sci. 2017, 10, 1716–1738. [Google Scholar] [CrossRef] [Green Version]
- Barbera, E.; Bertucco, A.; Kumar, S. Nutrients recovery and recycling in algae processing for biofuels production. Renew. Sustain. Energy Rev. 2018, 90, 28–42. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; Almutairi, A.W. A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery. Bioresour. Technol. 2020, 317, 124027. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Gheda, S.F.; El-Sayed, A.E.B.; Abo Shady, A.M.; El-Sheikh, M.E.; Schagerl, M. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. Environ. Sci. Pollut. Res. Int. 2019, 26, 18520–18532. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wan, C.; Mehmood, M.A.; Chang, J.S.; Bai, F.; Zhao, X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products—A review. Bioresour. Technol. 2017, 244, 1198–1206. [Google Scholar] [CrossRef]
- Lari, Z.; Moradi-kheibari, N.; Ahmadzadeh, H.; Abrishamchi, P.; Moheimani, N.R.; Murry, M.A. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J. Appl. Phycol. 2016, 28, 3235–3250. [Google Scholar] [CrossRef]
- Michelon, W.; Da Silva, M.L.; Mezzari, M.P.; Pirolli, M.; Prandini, J.M.; Soares, H.M. Effects of Nitrogen and Phosphorus on Biochemical Composition of Microalgae Polyculture Harvested from Phycoremediation of Piggery Wastewater Digestate. Appl. Biochem. Biotechnol. 2016, 178, 1407–1419. [Google Scholar] [CrossRef]
- Singh, P.; Guldhe, A.; Kumari, S.; Rawat, I.; Bux, F. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem. Eng. J. 2015, 94, 22–29. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.P.; Han, B.; Yu, X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresour. Technol. 2019, 274, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Oncel, S.S.; Imamoglu, E.; Gunerken, E.; Sukan, F.V. Comparison of different cultivation modes and light intensities using mono-cultures and co-cultures of Haematococcus pluvialis and Chlorella zofingiensis. J. Chem. Technol. Biotechnol. 2011, 86, 414–420. [Google Scholar] [CrossRef]
- Rasdi, N.W.; Qin, J.G. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J. Appl. Phycol. 2014, 27, 2221–2230. [Google Scholar] [CrossRef]
- Mayers, J.J.; Flynn, K.J.; Shields, R.J. Influence of the N:P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp. Bioresour. Technol. 2014, 169, 588–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abomohra, A.E.-F.; Shang, H.; El-Sheekh, M.; Eladel, H.; Ebaid, R.; Wang, S.; Wang, Q. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresour. Technol. 2019, 288, 121514. [Google Scholar] [CrossRef]
- BenMoussa-Dahmen, I.; Chtourou, H.; Rezgui, F.; Sayadi, S.; Dhouib, A. Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production. Bioresour. Technol. 2016, 218, 816–825. [Google Scholar] [CrossRef]
- Paliwal, C.; Mitra, M.; Bhayani, K.; Bharadwaj, S.V.V.; Ghosh, T.; Dubey, S.; Mishra, S. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 2017, 244, 1216–1226. [Google Scholar] [CrossRef]
- Saini, D.K.; Chakdar, H.; Pabbi, S.; Shukla, P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit. Rev. Food Sci. Nutr. 2020, 60, 391–405. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, W.; Xu, J.; Wang, Z.; Xu, J.; Yuan, Z. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 2014, 152, 292–298. [Google Scholar] [CrossRef]
- Pancha, I.; Chokshi, K.; George, B.; Ghosh, T.; Paliwal, C.; Maurya, R.; Mishra, S. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol. 2014, 156, 146–154. [Google Scholar] [CrossRef]
- El-Sayed, A.B. Some Physiological Studies on Green Algae; Plant Physiology Department, Faculty of Agriculture Cairo University: Cairo, Egypt, 1999. [Google Scholar]
- Fernandes, T.; Fernandes, I.; Andrade, C.A.P.; Cordeiro, N. Assessing the impact of sulfur concentrations on growth and biochemical composition of three marine microalgae. J. Appl. Phycol. 2020, 32, 967–975. [Google Scholar] [CrossRef]
- Ippoliti, D.; González, A.; Martín, I.; Sevilla, J.M.F.; Pistocchi, R.; Acién, F.G. Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J. Appl. Phycol. 2016, 28, 3159–3166. [Google Scholar] [CrossRef]
- Rhee, G.-Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake 1. Limnol. Oceanogr. 1978, 23, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Langer, G.; Oetjen, K.; Brenneis, T. Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation. J. Exp. Mar. Biol. Ecol. 2012, 413, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Li, L.; Liu, J. Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS ONE 2013, 8, e82188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agirman, N.; Cetin, A. Effect of nitrogen limitation on growth, total lipid accumulation and protein amount in Scenedesmus acutus as biofuel reactor candidate. Nat. Sci. Discov. 2017, 3, 33–38. [Google Scholar] [CrossRef]
- Mallick, N.; Mohn, F.H. Reactive oxygen species: Response of algal cells. J. Plant Physiol. 2000, 157, 183–193. [Google Scholar] [CrossRef]
- Arora, N.; Pienkos, P.T.; Pruthi, V.; Poluri, K.M.; Guarnieri, M.T. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol. Adv. 2018, 36, 1274–1292. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Anal, A.K. Enhanced lipid and starch productivity of microalga (Chlorococcum sp. TISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol. Rep. 2019, 21, e00298. [Google Scholar] [CrossRef]
- Fan, J.; Cui, Y.; Wan, M.; Wang, W.; Li, Y. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels 2014, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Bonfanti, C.; Cardoso, C.; Afonso, C.; Matos, J.; Garcia, T.; Tanni, S.; Bandarra, N.M. Potential of microalga Isochrysis galbana: Bioactivity and bioaccessibility. Algal Res. 2018, 29, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Roncarati, A.; Meluzzi, A.; Acciarri, S.; Tallarico, N.; Meloti, P. Fatty Acid Composition of Different Microalgae Strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloris atomus Butcher and Isochrysis sp.) According to the Culture Phase and the Carbon Dioxide Concentration. J. World Aquac. Soc. 2004, 35, 401–411. [Google Scholar] [CrossRef]
- Silitonga, A.; Masjuki, H.; Ong, H.C.; Mahlia, T.; Kusumo, F. Optimization of extraction of lipid from Isochrysis galbana microalgae species for biodiesel synthesis. Energy Sour. Part A Recovery Util. Environ. Eff. 2017, 39, 1167–1175. [Google Scholar]
- Tossavainen, M.; Ilyass, U.; Ollilainen, V.; Valkonen, K.; Ojala, A.; Romantschuk, M. Influence of long term nitrogen limitation on lipid, protein and pigment production of Euglena gracilis in photoheterotrophic cultures. PeerJ 2019, 7, e6624. [Google Scholar] [CrossRef]
- Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs 2018, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Gamage, D.; Hirotsu, N.; Martin, A.; Seneweera, S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front. Physiol. 2017, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Harwood, J.L.; Jones, A.L. Lipid Metabolism in Algae. In Advances in Botanical Research; Callow, J.A., Ed.; Academic Press: Cambridge, MA, USA, 1989; Volume 16, pp. 1–53. [Google Scholar]
- El-Sayed, A.; El-Fouly, M.; El-Sayed, A. Utilization efficiency of elevated nitrogen, phosphorous and potassium concentrations by the green alga Scenedesmus sp. In Proceedings of the 17th International Symposium of CIEC “Plant Nutrient Management under Stress Conditions”, Cairo, Egypt, 24–27 November 2008. [Google Scholar]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Touliabah, H.E.; Abdel-Hamid, M.I.; Almutairi, A.W. Long-term monitoring of the biomass and production of lipids by Nitzschia palea for biodiesel production. Saudi J. Biol. Sci. 2020, 27, 2038–2046. [Google Scholar] [CrossRef]
- Liu, W.; Lu, G.; Yang, G.; Bi, Y. Improving oxidative stability of biodiesel by cis-trans isomerization of carbon-carbon double bonds in unsaturated fatty acid methyl esters. Fuel 2019, 242, 133–139. [Google Scholar] [CrossRef]
- Gomaa, M.; Refaat, M.; Salim, T.; El-Khair, A.; El-Sayed, B.; Bekhit, M. Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation. Microbiol. Biotechnol. Lett. 2019, 47, 381–389. [Google Scholar] [CrossRef]
- ASTM-D5453. Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- EN 12916. Petroleum products: Determination of Aromatic Hydrocarbon Types in Middle Distillates. High Performance Liquid Chromatography Method with Refractive Index Detection; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Rosni, S.; Ahmad, F.; Awang, A.; Chye, F.Y.; Matanjun, P. Crude proteins, total soluble proteins, total phenolic contents and SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malaysia. Int. Food Res. J. 2015, 22, 1483–1493. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Botany 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Kirk, J.T.O.; Allen, R.L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 1965, 21, 523–530. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Sun, Z.; Zhong, Y.; Jiang, Y.; Chen, F. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresour. Technol. 2011, 102, 106–110. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Abomohra, A.E.; El-Naggar, A.H.; Baeshen, A.A. Potential of macroalgae for biodiesel production: Screening and evaluation studies. J. Biosci. Bioeng. 2018, 125, 231–237. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds and the algal species are available from the authors. |
NaNO3 (mM) | 0.88 | 0.66 | 0.44 | 0.22 | 0.0 |
GR (d−1) | 0.187 | 0.171 | 0.149 | 0.101 | 0.059 |
I (%) | 0.00 | 8.84 | 20.1 | 45.8 | 68.6 |
Fatty Acid | NaNO3 (mM) | ||||
---|---|---|---|---|---|
0.88 (Control) | 0.66 | 0.44 | 0.22 | 0 | |
Myristic 14:0 | 25.75 ± 1.89 | 20.06 * ± 2.07 | 16.21 *** ± 1.00 | 10.27 *** ± 0.59 | 7.36 *** ± 0.58 |
Palmitic 16:0 | 17.26 ± 1.00 | 16.67 ± 1.06 | 14.99 ± 1.50 | 10.12 *** ± 0.99 | 9.47 *** ± 0.99 |
Stearic 18:0 | 12.04 ± 0.94 | 10.34 ± 0.82 | 8.92 ± 0.98 | 8.91 *** ± 0.59 | 8.17 *** ± 0.54 |
Arachidilic C20:0 | 9.91 ± 0.69 | 10.66 ± 1.35 | 8.24 ± 0.75 | 7.61 ± 0.15 | 4.02 *** ± 0.04 |
Myristoleic 14:1 | 3.11 ± 0.12 | 4.86 ± 0.80 | 6.14 * ± 0.59 | 8.14 *** ± 0.57 | 11.04 *** ± 1.28 |
Palmitoleic 16:1 | 6.13 ± 0.97 | 7.07 ± 0.78 | 7.89 ± 0.55 | 8.02 ± 0.18 | 8.74 * ± 0.50 |
Oleic 18:1 | 8.14 ± 0.55 | 8.45 ± 0.88 | 10.62 ± 1.94 | 10.67 ± 0.89 | 11.67 ± 0.88 |
Linoleic 18:2 | 2.10 ± 0.02 | 2.14 ± 0.12 | 3.08 * ± 0.12 | 8.14 *** ± 0.54 | 10.4 *** ± 0.18 |
α-Linolenic 18:3 | 2.01 ± 0.04 | 5.22 *** ± 0.05 | 6.14 *** ± 0.06 | 6.97 *** ± 0.67 | 7.12 *** ± 0.69 |
γ-Linolenic 18:3 | 2.84 ± 0.19 | 3.17 ± 0.31 | 4.37 ** ± 0.51 | 4.95 *** ± 0.13 | 5.17 *** ± 0.38 |
Arachidonic 20:4 | 5.69 ± 0.63 | 6.08 ± 0.16 | 6.13 ± 0.14 | 7.52 * ± 0.33 | 7.62 * ± 0.82 |
Eicosapentaenoic 20:5 | 2.94 ± 0.30 | 3.09 ± 0.46 | 3.49 * ± 0.22 | 3.51 * ± 0.25 | 4.13 ** ± 0.02 |
Docosahexaenoic 22:6 | 2.08 ± 0.22 | 2.19 ± 0.58 | 3.78 * ± 0.32 | 5.17 *** ± 0.93 | 5.09 *** ± 0.60 |
Saturated fatty acids SFA (%) | 64.96 ± 4.52 | 57.73 * ± 5.30 | 48.36 *** ± 4.24 | 36.91 *** ± 2.33 | 29.02 *** ± 2.17 |
Monounsaturated fatty acids MUFA (%) | 17.38 ± 1.64 | 20.38 ± 2.45 | 24.65 ** ± 3.07 | 26.83 ** ± 1.63 | 31.45 *** ± 2.66 |
Polyunsaturated fatty acids PUFA (%) | 17.66 ± 1.40 | 21.89 ± 1.68 | 26.99 *** ± 1.36 | 36.26 *** ± 2.85 | 39.53 *** ± 2.68 |
Characteristics | NaNO3 (mM) | International Standards | |||||
---|---|---|---|---|---|---|---|
0.88 (control) | 0.66 | 0.44 | 0.22 | 0 | U.S. (ASTM D2425) | Europe (EN 12916) | |
ADU | 0.64 | 0.80 | 0.96 | 1.11 | 1.19 | - | - |
KV (mm2 s−1) | 4.80 | 4.70 | 4.60 | 4.50 | 4.46 | 1.9–6.0 | 3.5–5.0 |
SG | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.85–0.9 | - |
CP (°C) | 11.44 | 9.36 | 7.12 | 5.14 | 4.12 | - | - |
Cetane number | 58.60 | 57.57 | 56.45 | 55.46 | 54.95 | Min. 47 | 51–120 |
IV (g I2/100 g oil) | 60.35 | 71.93 | 84.39 | 95.41 | 101.09 | - | Max. 120 |
HHV (MJ kg−1) | 39.66 | 39.94 | 40.23 | 40.49 | 40.63 | - | - |
Db ≥ 4 (wt%) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ≤1 | - |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.W. Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production. Molecules 2020, 25, 4609. https://doi.org/10.3390/molecules25204609
Almutairi AW. Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production. Molecules. 2020; 25(20):4609. https://doi.org/10.3390/molecules25204609
Chicago/Turabian StyleAlmutairi, Adel W. 2020. "Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production" Molecules 25, no. 20: 4609. https://doi.org/10.3390/molecules25204609
APA StyleAlmutairi, A. W. (2020). Improvement of Chemical Composition of Tisochrysis lutea Grown Mixotrophically under Nitrogen Depletion towards Biodiesel Production. Molecules, 25(20), 4609. https://doi.org/10.3390/molecules25204609