Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples
Abstract
:1. Introduction
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gebregiworgis, T.; Powers, R. Application of NMR Metabolomics to Search for Human Disease Biomarkers. Comb. Chem. High Throughput Screen. 2012, 15, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C.Y. Introduction to Vibrational Spectroscopy in Food Science. Handb. Vib. Spectrosc. 2010. [Google Scholar] [CrossRef]
- Mantsch, H.H. The road to medical vibrational spectroscopy—A history. Analyst 2013, 138, 3863–3870. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Goodacre, R. Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Analyst 2006, 131, 875–885. [Google Scholar] [CrossRef]
- Türker-Kaya, S.; Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules 2017, 22, 168. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Doherty, J.; Zhang, Z.; Wehbe, K.; Cinque, G.; Gardner, P.; Denbigh, J. Increased optical pathlength through aqueous media for the infrared microanalysis of live cells. Anal. Bioanal. Chem. 2018, 410, 5779–5789. [Google Scholar] [CrossRef] [Green Version]
- Mehta, M.; Naffa, R.; Maidment, C.; Holmes, G.; Waterland, M. Raman and Atr-Ftir Spectroscopy Towards Classification of Wet Blue Bovine Leather Using Ratiometric and Chemometric Analysis. J. Leather Sci. Eng. 2020, 2. [Google Scholar] [CrossRef]
- Eberhardt, K.; Stiebing, C.; Matthaüs, C.; Schmitt, M.; Popp, J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update. Expert Rev. Mol. Diagn. 2015, 15, 773–787. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramczyk, H.; Brozek-Pluska, B. Raman imaging in biochemical and biomedical applications. Diagnosis and treatment of breast cancer. Chem. Rev. 2013, 113, 5766–5781. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vašková, H. A powerful tool for material identification: Raman spectroscopy. Int. J. Math. Model. Methods Appl. Sci. 2011, 5, 1205–1212. [Google Scholar]
- Hashimoto, K.; Badarla, V.R.; Kawai, A.; Ideguchi, T. Complementary vibrational spectroscopy. Nat. Commun. 2019, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Petibois, C.; Déléris, G. Chemical mapping of tumor progression by FT-IR imaging: Towards molecular histopathology. Trends Biotechnol. 2006, 24, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Treado, P.J.; Priore, R.J.; Nelson, M.P. Raman Spectroscopic Imaging. Handb. Vib. Spectrosc. 2010. [Google Scholar] [CrossRef]
- Pahlow, S.; Weber, K.; Popp, J.; Wood, B.R.; Kochan, K.; Rüther, A.; Perez-Guaita, D.; Heraud, P.; Stone, N.; Dudgeon, A.; et al. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. Appl. Spectrosc. 2018, 72, 52–84. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Almond, L.M.; Hutchings, J.; Lloyd, G.; Barr, H.; Shepherd, N.; Day, J.; Stevens, O.; Sanders, S.; Wadley, M.; Stone, N.; et al. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett’s esophagus. Gastrointest. Endosc. 2014, 79, 37–45. [Google Scholar] [CrossRef]
- Wong Kee Song, L.-M.; Molckovsky, A.; Wang, K.K.; Burgart, L.J.; Dolenko, B.; Somorjai, R.L.; Wilson, B.C. Diagnostic potential of Raman spectroscopy in Barrett’s esophagus. In Proceedings of the Advanced Biomedical and Clinical Diagnostic Systems III, San Jose, CA, USA, 22–27 January 2005; Volume 5692, p. 140. [Google Scholar] [CrossRef]
- Bergholt, M.S.; Zheng, W.; Ho, K.Y.; Teh, M.; Yeoh, K.G.; Yan So, J.B.; Shabbir, A.; Huang, Z. Fiberoptic confocal raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology 2014, 146, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Rubina, S.; Sathe, P.; Dora, T.K.; Chopra, S.; Maheshwari, A.; Krishna, C.M. In vivo Raman spectroscopy of cervix cancers. In Proceedings of the Optical Biopsy XII, San Francisco, CA, USA, 1–6 February 2014; Volume 8940, p. 89400E. [Google Scholar] [CrossRef]
- Shaikh, R.; Dora, T.K.; Chopra, S.; Maheshwari, A.; Kedar, K.D.; Bharat, R.; Krishna, C.M. In vivo Raman spectroscopy of human uterine cervix: Exploring the utility of vagina as an internal control. J. Biomed. Opt. 2014, 19, 087001. [Google Scholar] [CrossRef] [PubMed]
- Aljakouch, K.; Hilal, Z.; Daho, I.; Schuler, M.; Krauß, S.D.; Yosef, H.K.; Dierks, J.; Mosig, A.; Gerwert, K.; El-Mashtoly, S.F. Fast and Noninvasive Diagnosis of Cervical Cancer by Coherent Anti-Stokes Raman Scattering. Anal. Chem. 2019, 91, 13900–13906. [Google Scholar] [CrossRef] [PubMed]
- Vargis, E.; Kanter, E.M.; Majumder, S.K.; Keller, M.D.; Beaven, R.B.; Rao, G.G.; Mahadevan-Jansen, A. Effect of normal variations on disease classification of Raman spectra from cervical tissue. Analyst 2011, 136, 2981–2987. [Google Scholar] [CrossRef] [PubMed]
- Robichaux-Viehoever, A.; Kanter, E.; Shappell, H.; Billheimer, D.; Jones, H.; Mahadevan-Jansen, A. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia. Appl. Spectrosc. 2007, 61, 986–993. [Google Scholar] [CrossRef]
- Kanter, E.M.; Vargis, E.; Majumder, S.; Keller, M.D.; Woeste, E.; Rao, G.G.; Mahadevan-Jansen, A. Application of Raman spectroscopy for cervical dysplasia diagnosis. J. Biophotonics 2009, 2, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; McWilliams, A.; Lui, H.; McLean, D.I.; Lam, S.; Zeng, H. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 2003, 107, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Jermyn, M.; Mok, K.; Mercier, J.; Desroches, J.; Pichette, J.; Saint-Arnaud, K.; Bernstein, L.; Guiot, M.-C.; Petrecca, K.; Leblond, F. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Desroches, J.; Jermyn, M.; Mok, K.; Lemieux-Leduc, C.; Mercier, J.; St-Arnaud, K.; Urmey, K.; Guiot, M.-C.; Marple, E.; Petrecca, K.; et al. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed. Opt. Express 2015, 6, 2380. [Google Scholar] [CrossRef] [Green Version]
- Esmonde-White, K.A.; Mandair, G.S.; Raaii, F.; Jacobson, J.A.; Miller, B.S.; Urquhart, A.G.; Roessler, B.J.; Morris, M.D. Raman Spectroscopy of Synovial Fluid as a Tool for Diagnosing Osteoarthritis. J. Biomed. Opt. 2009, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Nichols, B.; Migden, M.R.; Rajaram, N.; Reichenberg, J.S.; Markey, M.K.; Ross, M.I.; Tunnell, J.W. Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis. J. Biomed. Opt. 2014, 19, 117003. [Google Scholar] [CrossRef] [PubMed]
- Schleusener, J.; Gluszczynska, P.; Reble, C.; Gersonde, I.; Helfmann, J.; Fluhr, J.W.; Lademann, J.; Röwert-Huber, J.; Patzelt, A.; Meinke, M.C. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Exp. Dermatol. 2015, 24, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Sahu, A.; Deshmukh, A.; Chaturvedi, P.; Krishna, C.M. In vivo raman spectroscopy of oral buccal mucosa: A study on malignancy associated changes (MAC)/cancer field effects (CFE). Analyst 2013, 138, 4175–4182. [Google Scholar] [CrossRef]
- Elumalai, B.; Prakasarao, A.; Ganesan, B.; Dornadula, K.; Ganesan, S. Raman spectroscopic characterization of urine of normal and oral cancer subjects. J. Raman Spectrosc. 2014, 46, 84–93. [Google Scholar] [CrossRef]
- Correia, N.A.; Batista, L.T.A.; Nascimento, R.J.M.; Cangussú, M.C.T.; Crugeira, P.J.L.; Soares, L.G.P.; Silveira, L.; Pinheiro, A.L.B. Detection of prostate cancer by Raman spectroscopy: A multivariate study on patients with normal and altered PSA values. J. Photochem. Photobiol. B Biol. 2020, 204, 111801. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, G.M.; Kemperman, P.M.J.H.; Sandilands, A.; Chen, H.; Campbell, L.E.; Kroboth, K.; Watson, R.; Rowland, M.; Puppels, G.J.; McLean, W.H.I.; et al. Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J. Allergy Clin. Immunol. 2010, 126, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Hackshaw, K.V.; Aykas, D.P.; Sigurdson, G.T.; Plans, M.; Madiai, F.; Yu, L.; Buffington, C.A.T.; Mónica Giusti, M.; Rodriguez-Saona, L. Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders. J. Biol. Chem. 2019, 294, 2555–2568. [Google Scholar] [CrossRef] [Green Version]
- Tian, P.; Zhang, W.; Zhao, H.; Lei, Y.; Cui, L.; Wang, W.; Li, Q.; Zhu, Q.; Zhang, Y.; Xu, Z. Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification. Int. J. Clin. Exp. Med. 2015, 8, 972–981. [Google Scholar]
- Bird, B.; Bedrossian, K.; Laver, N.; Miljković, M.; Romeo, M.J.; Diem, M. Detection of breast micro-metastases in axillary lymph nodes by infrared micro-spectral imaging. Analyst 2009, 134, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Elmi, F.; Movaghar, A.F.; Elmi, M.M.; Alinezhad, H.; Nikbakhsh, N. Application of FT-IR spectroscopy on breast cancer serum analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 187, 87–91. [Google Scholar] [CrossRef]
- Backhaus, J.; Mueller, R.; Formanski, N.; Szlama, N.; Meerpohl, H.G.; Eidt, M.; Bugert, P. Diagnosis of breast cancer with infrared spectroscopy from serum samples. Vib. Spectrosc. 2010, 52, 173–177. [Google Scholar] [CrossRef]
- Tiwari, S.; Triulzi, T.; Holton, S.; Regondi, V.; Paolini, B.; Tagliabue, E.; Bhargava, R. Infrared Spectroscopic Imaging Visualizes a Prognostic Extracellular Matrix-Related Signature in Breast Cancer. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Kyriakidou, M.; Anastassopoulou, J.; Tsakiris, A.; Koui, M.; Theophanides, T. FT-IR spectroscopy study in early diagnosis of skin cancer. In Vivo (Brooklyn) 2017, 31, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Jusman, Y.; Mat Isa, N.A.; Adnan, R.; Othman, N.H. Intelligent classification of cervical pre-cancerous cells based on the FTIR spectra. Ain. Shams. Eng. J. 2012, 3, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Sheng, D.; Liu, X.; Li, W.; Wang, Y.; Chen, X.; Wang, X. Distinction of leukemia patients’ and healthy persons’ serum using FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 101, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Zelig, U.; Mordechai, S.; Shubinsky, G.; Sahu, R.K.; Huleihel, M.; Leibovitz, E.; Nathan, I.; Kapelushnik, J. Pre-screening and follow-up of childhood acute leukemia using biochemical infrared analysis of peripheral blood mononuclear cells. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, M.; Bagheri Garmarudi, A.; Samani, S.; Ghasemi, K.; Ashuri, A. Application of linear discriminant analysis and attenuated total reflectance fourier transform infrared microspectroscopy for diagnosis of colon cancer. Pathol. Oncol. Res. 2011, 17, 435–441. [Google Scholar] [CrossRef]
- Lima, K.M.G.; Gajjar, K.B.; Martin-Hirsch, P.L.; Martin, F.L. Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods. Biotechnol. Prog. 2015, 31, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.; Wu, Y.; Wang, X.; Huang, D.; Chen, X.; Liu, X. Comparison of serum from gastric cancer patients and from healthy persons using FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 365–369. [Google Scholar] [CrossRef]
- Bird, B.; Miljkovi, M.; Remiszewski, S.; Akalin, A.; Kon, M.; Diem, M. Infrared spectral histopathology (SHP): A novel diagnostic tool for the accurate classification of lung cancer. Lab. Investig. 2012, 92, 1358–1373. [Google Scholar] [CrossRef] [Green Version]
- Großerueschkamp, F.; Kallenbach-Thieltges, A.; Behrens, T.; Brüning, T.; Altmayer, M.; Stamatis, G.; Theegarten, D.; Gerwert, K. Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging. Analyst 2015, 140, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gok, S.; Aydin, O.Z.; Sural, Y.S.; Zorlu, F.; Bayol, U.; Severcan, F. Bladder cancer diagnosis from bladder wash by Fourier transform infrared spectroscopy as a novel test for tumor recurrence. J. Biophotonics 2016, 9, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Untereiner, V.; Dhruvananda Sockalingum, G.; Garnotel, R.; Gobinet, C.; Ramaholimihaso, F.; Ehrhard, F.; Diebold, M.D.; Thiéfin, G. Bile analysis using high-throughput FTIR spectroscopy for the diagnosis of malignant biliary strictures: A pilot study in 57 patients. J. Biophotonics 2014, 7, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, H.; Lv, X.; Zhang, Z.; Zheng, X.; Wu, G.; Tang, J.; Ma, X.; Yue, X. Use of FT-IR spectroscopy combined with SVM as a screening tool to identify invasive ductal carcinoma in breast cancer. Optik 2020, 204, 164225. [Google Scholar] [CrossRef]
- Passos, J.O.S.; dos Santos Alves, M.V.; Morais, C.L.M.; Martin, F.L.; Cavalcante, A.F.; Lemos, T.M.A.M.; Moura, S.; Freitas, D.L.D.; Mariz, J.V.M.; Carvalho, J.L.; et al. Spectrochemical analysis in blood plasma combined with subsequent chemometrics for fibromyalgia detection. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Hackshaw, K.V.; Rodriguez-Saona, L.; Plans, M.; Bell, L.N.; Buffington, C.A.T. A bloodspot-based diagnostic test for fibromyalgia syndrome and related disorders. Analyst 2013, 138, 4453–4462. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Magrini Alva, T.D.; da Silva Martinho, H.; Almeida, J.D. Analysis of saliva composition in patients with burning mouth syndrome (BMS) by FTIR spectroscopy. Vib. Spectrosc. 2019, 100, 195–201. [Google Scholar] [CrossRef]
- Pereira Viana, M.R.; Martins Alves Melo, I.; Pupin, B.; Raniero, L.J.; de Azevedo Canevari, R. Molecular detection of HPV and FT-IR spectroscopy analysis in women with normal cervical cytology. Photodiagnosis Photodyn. Ther. 2020, 29, 101592. [Google Scholar] [CrossRef]
- Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy. J. Anal. Bioanal. Tech. 2015, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, S.; Shende, C.; Inscore, F.E.; Maksymiuk, P.; Gift, A. Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2005, 36, 208–212. [Google Scholar] [CrossRef]
- Han, S.; Locke, A.K.; Oaks, L.A.; Cheng, Y.L.; Coté, G.L.; Han, S.; Locke, A.K.; Oaks, L.A.; Cheng, Y.L.; Coté, G.L.; et al. Nanoparticle-based assay for detection of S100P mRNA using surface-enhanced Raman spectroscopy. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farquharson, S.; Shende, C.; Sengupta, A.; Huang, H.; Inscore, F. Rapid detection and identification of overdose drugs in saliva by surface-enhanced raman scattering using fused gold colloids. Pharmaceutics 2011, 3, 425–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Li, X.; Yang, T.; Guo, X.; Song, Y. Detection of saliva morphine using surface-enhanced Raman spectroscopy combined with immunochromatographic assay. J. Raman Spectrosc. 2020, 51, 642–648. [Google Scholar] [CrossRef]
- Yuen, C. Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J. Biomed. Opt. 2012, 17, 017005. [Google Scholar] [CrossRef]
- Botta, R.; Rajanikanth, A.; Bansal, C. Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS). Sens. Bio-Sens. Res. 2016, 9, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Cheng, I.-F.; Chang, H.C.; Chen, T.Y.; Hu, C.; Yang, F.L. Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced raman spectroscopy. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Kamińska, A.; Winkler, K.; Kowalska, A.; Witkowska, E.; Szymborski, T.; Janeczek, A.; Waluk, J. SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Muro, C.K.; Lednev, I.K. Identification of individual red blood cells by Raman microspectroscopy for forensic purposes: In search of a limit of detection. Anal. Bioanal. Chem. 2017, 409, 287–293. [Google Scholar] [CrossRef]
- Pahlow, S.; Orasch, T.; Žukovskaja, O.; Bocklitz, T.; Haas, H.; Weber, K. Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2020, 6351–6360. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Du, Y.; Zhao, F.; Zeng, J.; Mohan, C.; Shih, W.-C. Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed. Opt. Express 2015, 6, 849. [Google Scholar] [CrossRef] [Green Version]
- Muhamadali, H.; Watt, A.; Xu, Y.; Chisanga, M.; Subaihi, A.; Jones, C.; Ellis, D.I.; Sutcliffe, O.B.; Goodacre, R. Rapid detection and quantification of novel psychoactive substances (NPS) using Raman spectroscopy and surface-enhanced Raman scattering. Front. Chem. 2019, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Liu, H.; Meng, J.; Yang, L.; Liu, J.; Liu, J. Portable Kit for Identification and Detection of Drugs in Human Urine Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2015, 87, 9500–9506. [Google Scholar] [CrossRef]
- Hashemi, H.; Varshosaz, J.; Fazeli, H.; Sharafi, S.M.; Mirhendi, H.; Chadeganipour, M.; Yousefi, H.A.; Manoochehri, K.; Chermahini, Z.A.; Jafarzadeh, L.; et al. Rapid differential diagnosis of vaginal infections using gold nanoparticles coated with specific antibodies. Med. Microbiol. Immunol. 2019, 208, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Ponnaiah, S.K.; Prakash, P.; Vellaichamy, B.; Paulmony, T.; Selvanathan, R. Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets. Electrochim. Acta 2018, 283, 914–921. [Google Scholar] [CrossRef]
- Hans, K.M.-C.; Gianella, M.; Sigrist, M.W. Sensing cocaine in saliva with attenuated total reflection infrared (ATR-IR) spectroscopy combined with a one-step extraction method. In Proceedings of the Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics; and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV, San Francisco, CA, USA, 21–26 January 2012; Volume 8229, p. 822919. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, J.G.; Maji, S.; Malhotra, B.D. Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens. Bioelectron. 2016, 78, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Perez-Guaita, D.; Richardson, Z.; Heraud, P.; Wood, B. Quantification and Identification of Microproteinuria Using Ultrafiltration and ATR-FTIR Spectroscopy. Anal. Chem. 2020, 92, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Guaita, D.; Sánchez-Illana, Á.; Garrigues, S.; de la Guardia, M. Determination of lidocaine in urine at low ppm levels using dispersive microextraction and attenuated total reflectance-Fourier transform infrared measurements of dry films. Microchem. J. 2015, 121, 178–183. [Google Scholar] [CrossRef]
- Battal, D.; Akgönüllü, S.; Yalcin, M.S.; Yavuz, H.; Denizli, A. Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens. Bioelectron. 2018, 111, 10–17. [Google Scholar] [CrossRef]
- Shaw, R.A.; Mantsch, H.H. Vibrational Spectroscopy Applications in Clinical Chemistry. In Handbook of Vibrational Spectroscopy; Griffiths, P.R., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Jing, J.; Gao, Y. Urine biomarkers in the early stages of diseases: Current status and perspective. Discov. Med. 2018, 25, 57–65. [Google Scholar]
- Jia, L.; Li, X.; Shao, C.; Wei, L.; Li, M.; Guo, Z.; Liu, Z.; Gao, Y. Using an Isolated Rat Kidney Model to Identify Kidney Origin Proteins in Urine. PLoS ONE 2013, 8, e66911. [Google Scholar] [CrossRef] [Green Version]
- Jaychandran, S.; Meenapriya, P.; Ganesan, S. Raman Spectroscopic Analysis of Blood, Urine, Saliva and Tissue of Oral Potentially Malignant Disorders and Malignancy-A Diagnostic Study. Int. J. Oral Craniofacial Sci. 2016, 011–014. [Google Scholar] [CrossRef] [Green Version]
- Giesbertz, P.; Daniel, H. Branched-chain amino acids as biomarkers in diabetes. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Leordean, C.; Canpean, V.; Astilean, S. Surface-Enhanced Raman Scattering (SERS) Analysis of Urea Trace in Urine, Fingerprint, and Tear Samples. Spectrosc. Lett. 2012, 45, 550–555. [Google Scholar] [CrossRef]
- Sato, K.; Kang, W.H.; Saga, K.; Sato, K.T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol. 1989, 20, 537–563. [Google Scholar] [CrossRef]
- Jadoon, S.; Karim, S.; Akram, M.R.; Kalsoom Khan, A.; Zia, M.A.; Siddiqi, A.R.; Murtaza, G. Recent Developments in Sweat Analysis and Its Applications. Int. J. Anal. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Blanco-Formoso, M.; Alvarez-Puebla, R.A. Cancer Diagnosis through SERS and Other Related Techniques. Int. J. Mol. Sci. 2020, 21, 2253. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Marson, F.A.L.; Mendonça, R.M.H.; Bertuzzo, C.S.; Paschoal, I.A.; Ribeiro, J.D.; Ribeiro, A.F.; Levy, C.E. Chloride and sodium ion concentrations in saliva and sweat as a method to diagnose cystic fibrosis. J. Pediatr. (Rio J.) 2019, 95, 443–450. [Google Scholar] [CrossRef]
- Raiszadeh, M.M.; Ross, M.M.; Russo, P.S.; Schaepper, M.A.; Zhou, W.; Deng, J.; Ng, D.; Dickson, A.; Dickson, C.; Strom, M.; et al. Proteomic Analysis of Eccrine Sweat: Implications for the Discovery of Schizophrenia Biomarker Proteins. J. Proteome Res. 2012, 11, 2127–2139. [Google Scholar] [CrossRef] [Green Version]
- Sikirzhytski, V.; Sikirzhytskaya, A.; Lednev, I.K. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification. Anal. Chim. Acta 2012, 718, 78–83. [Google Scholar] [CrossRef]
- Song, W.; Mao, Z.; Liu, X.; Lu, Y.; Li, Z.; Zhao, B.; Lu, L. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 2012, 4, 2333. [Google Scholar] [CrossRef]
- Balan, V.; Mihai, C.-T.; Cojocaru, F.-D.; Uritu, C.-M.; Dodi, G.; Botezat, D.; Gardikiotis, I. Vibrational Spectroscopy Fingerprinting in Medicine: From Molecular to Clinical Practice. Materials 2019, 12, 2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greabu, M.; Battino, M.; Mohora, M.; Totan, A.; Didilescu, A.; Spinu, T.; Totan, C.; Miricescu, D.; Radulescu, R. Saliva—A diagnostic window to the body, both in health and in disease. J. Med. Life. 2009, 2, 124–132. [Google Scholar] [PubMed]
- Khaustova, S.A.; Shkurnikov, M.U.; Grebenyuk, E.S.; Artyushenko, V.G.; Tonevitsky, A.G. Assessment of Biochemical Characteristics of the Saliva Using Fourier Transform Mid-Infrared Spectroscopy. Bull. Exp. Biol. Med. 2009, 148, 841–844. [Google Scholar] [CrossRef]
- Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020. [Google Scholar] [CrossRef] [PubMed]
- Setti, G.; Pezzi, M.E.; Viani, M.V.; Pertinhez, T.A.; Cassi, D.; Magnoni, C.; Meleti, M. Meleti Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 907. [Google Scholar] [CrossRef] [Green Version]
- Paschotto, D.R.; Pupin, B.; Bhattacharjee, T.T.; Soares, L.E.S. Saliva preparation method exploration for ATR-FTIR spectroscopy: Towards bio-fluid based disease diagnosis. Anal. Sci. 2020. [Google Scholar] [CrossRef]
- Rekha, P.; Aruna, P.; Brindha, E.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near-infrared Raman spectroscopic characterization of salivary metabolites in the discrimination of normal from oral premalignant and malignant conditions. J. Raman Spectrosc. 2016, 47, 763–772. [Google Scholar] [CrossRef]
- Khushid, Z.; Asiri, F.Y.I.; Al Wadaani, H. Human Saliva: Non-Invasive Fluid for Detecting Novel Coronavirus (2019-nCoV). Int. J. Environ. Res. Public Health 2020, 17, 2225. [Google Scholar] [CrossRef] [Green Version]
- Fujii, S.; Sato, S.; Fukuda, K.; Okinaga, T.; Ariyoshi, W.; Usui, M.; Nakashima, K.; Nishihara, T.; Takenaka, S. Diagnosis of Periodontal Disease from Saliva Samples Using Fourier Transformu Infrared Microscopy Coupled with Partial Least Squares Discriminant Analysis. Anal. Sci. 2016, 32, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.M.; Davies, K.; Kazakeviciute, A.; Wheatley, A.M.; Dockery, P.; Keogh, I.; Olivo, M. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis. Nanomedicine Nanotechnology. Biol. Med. 2016, 12, 1593–1601. [Google Scholar] [CrossRef]
- Ramírez-Elías, M.G.; González, F.J. Raman Spectroscopy for In Vivo Medical Diagnosis. In Raman Spectroscopy; InTech: Vienna, Austria, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bonifacio, A.; Cervo, S.; Sergo, V. Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 2015, 407, 8265–8277. [Google Scholar] [CrossRef]
- Depciuch, J.; Parlinska-Wojtan, M. Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods. J. Pharm. Biomed. Anal. 2018, 150, 80–86. [Google Scholar] [CrossRef]
- Hrubešová, K.; Fousková, M.; Habartová, L.; Fišar, Z.; Jirák, R.; Raboch, J.; Setnička, V. Search for biomarkers of Alzheimer‘s disease: Recent insights, current challenges and future prospects. Clin. Biochem. 2019, 72, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Habartová, L.; Hrubešová, K.; Syslová, K.; Vondroušová, J.; Fišar, Z.; Jirák, R.; Raboch, J.; Setnička, V. Blood-based molecular signature of Alzheimer’s disease via spectroscopy and metabolomics. Clin. Biochem. 2019, 72, 58–63. [Google Scholar] [CrossRef]
- Marks, H.; Schechinger, M.; Garza, J.; Locke, A.; Coté, G. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care. Nanophotonics 2017, 6, 681–701. [Google Scholar] [CrossRef]
- Sharma, S.; Chophi, R.; Singh, R. Forensic discrimination of menstrual blood and peripheral blood using attenuated total reflectance (ATR)-Fourier transform infrared (FT-IR) spectroscopy and chemometrics. Int. J. Legal Med. 2020, 134, 63–77. [Google Scholar] [CrossRef]
- Elkins, K.M. Rapid Presumptive “Fingerprinting” of Body Fluids and Materials by ATR FT-IR Spectroscopy*,†. J. Forensic Sci. 2011, 56, 1580–1587. [Google Scholar] [CrossRef]
- Travo, A.; Paya, C.; Déléris, G.; Colin, J.; Mortemousque, B.; Forfar, I. Potential of FTIR spectroscopy for analysis of tears for diagnosis purposes. Anal. Bioanal. Chem. 2014, 406, 2367–2376. [Google Scholar] [CrossRef]
- Borchman, D.; Foulks, G.N.; Yappert, M.C.; Tang, D.; Ho, D.V. Spectroscopic evaluation of human tear lipids. Chem. Phys. Lipids 2007, 147, 87–102. [Google Scholar] [CrossRef]
- Filik, J.; Stone, N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 2008, 616, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Filik, J.; Stone, N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 218–224. [Google Scholar] [CrossRef]
- Nagase, Y.; Yoshida, S.; Kamiyama, K. Analysis of human tear fluid by Fourier transform infrared spectroscopy. Biopolymers 2005, 79, 18–27. [Google Scholar] [CrossRef]
- Jakobs, B.S.; Volmer, M.; Swinkels, D.W.; Hofs, M.T.W.; Donkervoort, S.; Joosting, M.M.J.; Wolthers, B.G.; de Peinder, P.; Voorbij, H.A.M. New method for faecal fat determination by mid-infrared spectroscopy, using a transmission cell: An improvement in standardization. Ann. Clin. Biochem. 2000, 37, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koya, S.K.; Yurgelevic, S.; Brusatori, M.; Huang, C.; Diebel, L.N.; Auner, G.W. Rapid Detection of Clostridium difficile Toxins in Stool by Raman Spectroscopy. J. Surg. Res. 2019, 244, 111–116. [Google Scholar] [CrossRef]
- Nirea, K.G.; Pérez de Nanclares, M.; Skugor, A.; Afseth, N.K.; Meuwissen, T.H.E.; Hansen, J.Ø.; Mydland, L.T.; Øverland, M. Assessment of fecal near-infrared spectroscopy to predict feces chemical composition and apparent total-tract digestibility of nutrients in pigs1. J. Anim. Sci. 2018, 96, 2826–2837. [Google Scholar] [CrossRef]
- Di Terlizzi, R.; Platt, S. The function, composition and analysis of cerebrospinal fluid in companion animals: Part I–Function and composition. Vet. J. 2006, 172, 422–431. [Google Scholar] [CrossRef]
- Conly, J.M.; Ronald, A.R. Cerebrospinal fluid as a diagnostic body fluid. Am. J. Med. 1983, 75, 102–108. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Petzold, A.; Bennett, J.L.; Berven, F.S.; Brundin, L.; Comabella, M.; Franciotta, D.; Frederiksen, J.L.; Fleming, J.O.; Furlan, R.; et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 2009, 73, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Horosh, M.; Feldman, H.; Yablonovich, A.; Firer, M.A.; Abookasis, D. Broadband Infrared Spectroscopy for Non-Contact Measurement of Neurological Disease Biomarkers in Cerebrospinal Fluid. Appl. Spectrosc. 2017, 71, 496–506. [Google Scholar] [CrossRef]
- Sathyavathi, R.; Dingari, N.C.; Barman, I.; Prasad, P.S.R.; Prabhakar, S.; Narayana Rao, D.; Dasari, R.R.; Undamatla, J. Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J. Biophotonics 2013, 6, 567–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminska, A.; Witkowska, E.; Kowalska, A.; Skoczyriska, A.; Gawryszewska, I.; Guziewicz, E.; Snigurenko, D.; Waluk, J. Highly efficient SERS-based detection of cerebrospinal fluid neopterin as a diagnostic marker of bacterial infection. Anal. Bioanal. Chem. 2016, 408, 4319–4327. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.R.; Quinn, M.A.; Tait, B.; Ashdown, M.; Hislop, T.; Romeo, M.; McNaughton, D. FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies. Biospectroscopy 1998, 4, 75–91. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci. Int. 2009, 193, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Drabovich, A.P.; Saraon, P.; Jarvi, K.; Diamandis, E.P. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat. Rev. Urol. 2014, 11, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Kline, E.E.; Treat, E.G.; Averna, T.A.; Davis, M.S.; Smith, A.Y.; Sillerud, L.O. Citrate Concentrations in Human Seminal Fluid and Expressed Prostatic Fluid Determined via 1 H Nuclear Magnetic Resonance Spectroscopy Outperform Prostate Specific Antigen in Prostate Cancer Detection. J. Urol. 2006, 176, 2274–2279. [Google Scholar] [CrossRef]
- Mobley, D.F. Semen Cultures in the Diagnosis of Bacterial Prostatitis. J. Urol. 1975, 114, 83–85. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci. Int. 2009, 188, 1–17. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci. Int. 2008, 181, e1–e5. [Google Scholar] [CrossRef]
- Raman, J.D.; Nobert, C.F.; Goldstein, M. Increased incidence of testicular cancer in men presenting with infertility and abnormal semen analysis. J. Urol. 2005, 174, 1819–1822. [Google Scholar] [CrossRef]
- Agarwal, A.; Majzoub, A.; Esteves, S.C.; Ko, E.; Ramasamy, R.; Zini, A. Clinical utility of sperm DNA fragmentation testing: Practice recommendations based on clinical scenarios. Transl. Androl. Urol. 2016, 5, 935–950. [Google Scholar] [CrossRef] [Green Version]
- Sikirzhytskaya, A.; Sikirzhytski, V.; Lednev, I.K. Raman spectroscopic signature of vaginal fluid and its potential application in forensic body fluid identification. Forensic Sci. Int. 2012, 216, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Thinkhamrop, J.; Lumbiganon, P.; Thongkrajai, P.; Chongsomchai, C.; Pakarasang, M. Vaginal fluid pH as a screening test for vaginitis. Int. J. Gynecol. Obstet. 1999, 66, 143–148. [Google Scholar] [CrossRef]
- Powell, A.M.; Nyirjesy, P. New Perspectives on the Normal Vagina and Noninfectious Causes of Discharge. Clin. Obstet. Gynecol. 2015, 58, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Grande, G.; Vincenzoni, F.; Milardi, D.; Pompa, G.; Ricciardi, D.; Fruscella, E.; Mancini, F.; Pontecorvi, A.; Castagnola, M.; Marana, R. Cervical mucus proteome in endometriosis. Clin. Proteomics 2017, 14, 7. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, I.; Zapata, F.; Garcia-Ruiz, C. Analysis of human bodily fluids on super absorbent pads by ATR-FTIR. Talanta 2017, 2, 634–640. [Google Scholar] [CrossRef]
- Mardanian, F.; Sheikh-Soleimani, Z. The diagnostic role of cervico-vaginal fluid interleukins-1α in endometriosis: A case-control study. J. Res. Med. Sci. 2014, 19, 1145–1149. [Google Scholar]
- De la O.-Cuevas, E.; Badillo-Ramírez, I.; Islas, S.R.; Araujo-Andrade, C.; Saniger, J.M. Sensitive Raman detection of human recombinant interleukin-6 mediated by DCDR/GERS hybrid platforms. RSC Adv. 2019, 9, 12269–12275. [Google Scholar] [CrossRef] [Green Version]
- Cowin, S.C. How Is a Tissue Built? J. Biomech. Eng. 2000, 122, 553–569. [Google Scholar] [CrossRef]
- Hansma, P.; Yu, H.; Schultz, D.; Rodriguez, A.; Yurtsev, E.A.; Orr, J.; Tang, S.; Miller, J.; Wallace, J.; Zok, F.; et al. The tissue diagnostic instrument. Rev. Sci. Instrum. 2009, 80, 054303. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.C.; Martin, B.R.; Asa, S.L. Defining diagnostic tissue in the era of personalized medicine. Can. Med. Assoc. J. 2013, 185, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Mahecha, A.; Lafleur, J.; Pelmus, M.; Seguin, C.; Lan, C.; Discepola, F.; Kovacina, B.; Christodoulopoulos, R.; Salvucci, O.; Mihalcioiu, C.; et al. The identification of challenges in tissue collection for biomarker studies: The Q-CROC-03 neoadjuvant breast cancer translational trial experience. Mod. Pathol. 2017, 30, 1567–1576. [Google Scholar] [CrossRef]
- Schwartz, L.E.; Aisner, D.L.; Baloch, Z.W.; Sterman, D.; Vachani, A.; Gillespie, C.; Haas, A.; Litzky, L.A. The diagnostic efficacy of combining bronchoscopic tissue biopsy and endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis of malignant lesions in the lung. Diagn. Cytopathol. 2013, 41, 929–935. [Google Scholar] [CrossRef]
- Lima, M.; Gargano, T.; Fabbri, R.; Maffi, M.; Destro, F. Ovarian Tissue Collection for Cryopreservation in Pediatric Age: Laparoscopic Technical Tips. J. Pediatr. Adolesc. Gynecol. 2014, 27, 95–97. [Google Scholar] [CrossRef]
- Nallala, J.; Diebold, M.-D.; Gobinet, C.; Bouché, O.; Sockalingum, G.D.; Piot, O.; Manfait, M. Infrared spectral histopathology for cancer diagnosis: A novel approach for automated pattern recognition of colon adenocarcinoma. Analyst 2014, 139, 4005–4015. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.C.; Bhargava, R.; Hewitt, S.M.; Levin, I.W. Infrared spectroscopic imaging for histopathologic recognition. Nat. Biotechnol. 2005, 23, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, Z.; Chen, J.; Jing, C. Raman Spectroscopy in Colorectal Cancer Diagnostics: Comparison of PCA-LDA and PLS-DA Models. J. Spectrosc. 2016, 2016, 1–6. [Google Scholar] [CrossRef]
- Sinica, A.; Brožáková, K.; Brůha, T.; Votruba, J. Raman spectroscopic discrimination of normal and cancerous lung tissues. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 257–266. [Google Scholar] [CrossRef]
Methodology | Disease Type/Metabolite | Patient Number | Results | Reference | ||
---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | ||||
Probe (830 nm) | Nondysplastic Barrett’s esophagus (NDBE) | 62 | 86 | 88 | [20] | |
Probe (785 nm) | 65 | 86 | 88 | 87 | [21] | |
Confocal Probe (785 nm) | Barrett’s esophagus (BE) | 373 | 87 | 84.7 | [22] | |
Probe (785 nm) | Cervical Cancer | 63 | 100 | 96.7 | [23] | |
Probe (785 nm) | 93 | [24] | ||||
Confocal Microscope (532 nm) | 30 | 100 | 100 | 100 | [25] | |
Portable (785 nm) | Cervical Precancer | 172 | 97 | [26] | ||
Portable with probe (785 nm) | 79 | 89 | 81 | [27] | ||
Portable with probe (785 nm) | 145 | 94 | [28] | |||
Benchtop with probe (785 nm) | Lung Cancer | 10 | 94 | 92 | [29] | |
Portable with probe (785 nm) | Brain Cancer | 17 | 93 | 91 | [30] | |
Portable with probe (785 nm) | 10 | 84 | 89 | 87 | [31] | |
Microscope | Osteoarthritis | 40 | 74 | 71 | [32] | |
Probe (830 nm) | Skin Cancer | 76 | 100 | 100 | 100 | [33] |
Probe (785 nm) | 104 | 74 | 82 | [34] | ||
Confocal Probe (785 nm) | Oral Cancer | 84 | 92.7 (tumor) | 98.66 (control) | [35] | |
Confocal Microscope (785 nm) | Oral Cancer (urine tested) | 167 | 98.6 | 87.1 | 93.7 | [36] |
Dispersive (830 nm) | Prostate Cancer (blood tested) | 107 | 87.41 | 76.47 | [37] | |
Confocal Microscope (785 nm) | Atopic Dermatitis | 132 | 98.73 | 86.89 | [38] | |
Confocal Microscope (1064 nm) | FM *, RA *, SLE * | 88 | no misclassified sample | [39] |
Methodology | Disease Type/Metabolite | Patient Number | Results | Reference | ||
---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | ||||
Benchtop ATR | Breast Cancer | 100 | 90 | 98 | 94 | [40] |
Miscroscope Trans-reflectance | 20 | [41] | ||||
Benchtop Transmission | 86 | 76 | 72 | 80 | [42] | |
Benchtop Trans-reflectance | 196 | Cluster analysis: 98 | Cluster analysis: 95 | [43] | ||
ANN *: 92 | ANN: 100 | |||||
Microscope | Breast Cancer-ECM3 * gene | 97 | 91 | 95 | [44] | |
Benchtop ATR–FTIR | Skin Cancer | 7 | [45] | |||
Benchtop | Cervical Precancer | 100 | 95.2 | 97.4 | [46] | |
Benchtop | Leukemia | 34 | 83.3 | 79 | [47] | |
Microscope | 51 | [48] | ||||
Microscope ATR | Colon Cancer | 78 | 100 | 93.1 | 95.8 | [49] |
Benchtop ATR | Ovarian Cancer (blood tested) | 30 | 100 | 100 | [50] | |
Benchtop | Gastric Cancer (serum tested) | 46 | 100 | 80 | [51] | |
Microscope | Lung Cancer | 99.3 | 94.4 | 96.8 | [52] | |
Microscope Trans-reflectance | Lung Tumor (tissue tested) | 112 | 97 | [53] | ||
Benchtop Transmittance | Bladder Cancer | 136 | 100 | 58.8 | [54] | |
Benchtop Reflectance | 90 | 80.9 | ||||
Benchtop Transmission | Malignant Biliary Strictures | 57 | 90 | 100 | [55] | |
Benchtop | Invasive Ductal Carcinoma | 229 | 91.7 | 100 | 95.7 | [56] |
Benchtop ATR | FM * | 252 | 89.5 | 79 | 84.2 | [57] |
Microscope ATR | FM, OA *, RA * | 41 | 100(SIMCA *); 75(RF *) | [58] | ||
Portable ATR | FM, RA, SLE * | 70 | no misclassified sample | [39] | ||
Benchtop | Burning Mouth Syndrome (saliva tested) | 28 | Area under the ROC curve calculated as 0.75 | [59] | ||
Microscope | Human Papillomavirus | 50 | 76.9 | 76.7 | [60] |
Methodology | Analyte | Tested Biofluid | Limit of Detection | Reference |
---|---|---|---|---|
Dispersive Raman 785 nm—SERS | Cocaine | Saliva | 25 ng/mL | [61] |
FT-Raman 785 nm—SERS | 5-Fluorouracil | 150 ng/mL | [62] | |
Handheld Raman 633 nm—SERS | S100P mRNA * | 1.1 nM | [63] | |
FT-Raman 785 nm—SERS | Cocaine, PCP *, diazepam, acetaminophen | Cocaine: 50 ng/mL, PCP: 1 mcg/mL, diazepam: 1 mcg/mL, acetaminophen: 10 mcg/mL | [64] | |
Raman Microscope 633 nm—SERS | Morphine | 2.4 × 10−4 ng/mL | [65] | |
Raman Microscope 633 nm—SERRS * | Hemozoin - Malaria Biomarker | Blood | 30 parasites/μl | [66] |
Raman Microscope 633 nm—SERS | d-Glucose | 1 µM | [67] | |
Raman—SERS | E. coli, S. aureus, P. aeruginosa | E. coli: 3 × 104 CFU/mL, S. aureus: 3 × 103 CFU/mL, P. aeruginosa: 5 × 103 CFU/mL | [68] | |
Raman Microscope 633 nm—SERS | Interleukins (IL-6, IL-8, IL-16) | IL-6: 2.3 pg/mL, IL-8: 6.5 pg/mL, IL-16: 4.2 pg/mL | [69] | |
Raman Microscope 785 nm | Red blood cell | 250 fL (as little as a single red blood cell) | [70] | |
Raman Microscope 514 nm—IERS * | TAFC-Biomarker of invasive aspergillosis | Urine | 0.5 ng/mL | [71] |
Raman—S-SERS * | Creatinine | 0.68 mg/dl | [72] | |
Raman Microscope 785 nm—SERS | Mephedrone, nor-mephedrone, 4-methylephedrine | ~2 nM (0.41 g/L) | [73] | |
Handheld Raman 785 nm—SERS | Methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA), and methcathinone (MC) | 0.1 ppm | [74] | |
FT-IR benchtop | Candida, Gardnerella vaginalis | Vaginal fluid | Candida: 0.25 × 102 CFU/mL, Gardnerella vaginalis 1 × 102 CFU/mL | [75] |
FT-IR benchtop | Thiocyanate | Saliva | 140 pM | [76] |
FT-IR benchtop—ATR * | Cocaine | 10 µg/mL | [77] | |
FT-IR | CYFRA-21-1 biomarker of oral cancer | 0.122 ng/mL | [78] | |
FT-IR benchtop—single reflection ATR | Albumin | Urine | 6.7 ppm | [79] |
FT-IR benchtop—nine reflection ATR | Lidocaine | 0.5 mg/L | [80] | |
FT-IR benchtop—ATR | Synthetic cannabinoids | JWH-018: 0.3 pg/mL, JWH-073: 0.45 pg/mL, JWH-018 pentanoic acid: 0.4 pg/mL, JWH-073 butanoic acid: 0.2 pg/mL | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hackshaw, K.V.; Miller, J.S.; Aykas, D.P.; Rodriguez-Saona, L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020, 25, 4725. https://doi.org/10.3390/molecules25204725
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules. 2020; 25(20):4725. https://doi.org/10.3390/molecules25204725
Chicago/Turabian StyleHackshaw, Kevin V., Joseph S. Miller, Didem P. Aykas, and Luis Rodriguez-Saona. 2020. "Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples" Molecules 25, no. 20: 4725. https://doi.org/10.3390/molecules25204725
APA StyleHackshaw, K. V., Miller, J. S., Aykas, D. P., & Rodriguez-Saona, L. (2020). Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules, 25(20), 4725. https://doi.org/10.3390/molecules25204725