Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Precursor Peptide with Two Disulfide Bonds and 2 × Cys(Acm) and the Topological Isomer
2.2. Topological Selection for the Formation of the Third Disulfide Bond Using I2-Oxidation
2.3. The Solution Structures of the Topological Isomer and Acm2-Precursor Peptide Determined by NMR Spectroscopy
3. Discussion
4. Materials and Methods
4.1. Materials and Apparatus
4.2. Syntheses of Peptide
4.3. I2-Oxidation of the Peptide with Two Disulfide Bonds and 2 × Cys(Acm)
4.4. Reversed-Phase High Performance Liquid Chromatography (RP-HPLC)
4.5. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF/MS)
4.6. Amino Acid Analysis
4.7. CD Measurement
4.8. NMR Measurement and Structure Calculation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Creighton, T.E. Disulphide bonds and protein stability. Bioessays 1988, 8, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Grimsley, G.R.; Thomson, J.A.; Barnett, B.J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J. Biol. Chem. 1988, 263, 11820–11825. [Google Scholar] [PubMed]
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Weissman, J.S.; Kim, P.S. Reexamination of the folding of BPTI: Predominance of native intermediates. Science 1991, 253, 1386–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, M.; Shimamoto, S.; Hidaka, Y. A chemical method for investigating disulfide-coupled peptide and protein folding. FEBS J. 2012, 279, 2283–2295. [Google Scholar] [CrossRef]
- Garbers, D.L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 1992, 71, 1–4. [Google Scholar] [CrossRef]
- Chao, A.C.; de Sauvage, F.J.; Dong, Y.J.; Wagner, J.A.; Goeddel, D.V.; Gardner, P. Activation of intestinal CFTR Cl-channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 1994, 13, 1065–1072. [Google Scholar] [CrossRef]
- Shimonishi, Y.; Hidaka, Y.; Koizumi, M.; Hane, M.; Aimoto, S.; Takeda, T.; Miwatani, T.; Takeda, Y. Mode of disulfide bond formation of a heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett. 1987, 215, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Hidaka, Y.; Kubota, H.; Yoshimura, S.; Ito, H.; Takeda, Y.; Shimonishi, Y. Disulfide linkages in a heat-stable enterotoxin (STp) produced by a porcine strain of enterotoxigenic Escherichia coli. Bull. Chem. Soc. Jpn. 1988, 61, 1265–1271. [Google Scholar] [CrossRef] [Green Version]
- Aimoto, S.; Takao, T.; Shimonishi, Y.; Hara, S.; Takeda, T.; Takeda, Y.; Miwatani, T. Amino-acid sequence of a heat-stable enterotoxin produced by human enterotoxigenic Escherichia coli. Eur. J. Biochem. 1982, 129, 257–263. [Google Scholar] [CrossRef]
- Takao, T.; Hitouji, T.; Aimoto, S.; Shimonishi, Y.; Hara, S.; Takeda, T.; Takeda, Y.; Miwatani, T. Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigenic Escherichia coli strain 18D. FEBS Lett. 1983, 152, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, S.; Ikemura, H.; Watanabe, H.; Aimoto, S.; Shimonishi, Y.; Hara, S.; Takeda, T.; Miwatani, T.; Takeda, Y. Essential structure for full entero-toxigenic activity of heat-stable entero-toxin produced by entero-toxigenic escherichia-coli. FEBS Lett. 1985, 181, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.R.; Rivier, J.E.; Galyean, R.; Cruz, L.J.; Olivera, B.M. Conotoxin MI. Disulfide bonding and conformational states. J. Biol. Chem. 1983, 258, 12247–12251. [Google Scholar]
- Hidaka, Y.; Ohno, M.; Hemmasi, B.; Hill, O.; Forssmann, W.G.; Shimonishi, Y. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein. Biochemistry 1998, 37, 8498–8507. [Google Scholar] [CrossRef] [PubMed]
- Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. The synthesis of cystine peptides by Iodine oxidation of S-Trityl-cysteine and S-Acetamidomethyl-cysteine peptides. Helv. Chim. Acta 1980, 63, 899–915. [Google Scholar] [CrossRef]
- Ozaki, H.; Sato, T.; Kubota, H.; Hata, Y.; Katsube, Y.; Shimonishi, Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J. Biol. Chem. 1991, 266, 5934–5941. [Google Scholar]
- Chino, N.; Kubo, S.; Kitani, T.; Yoshida, T.; Tanabe, R.; Kobayashi, Y.; Nakazato, M.; Kangawa, K.; Kimura, T. Topological isomers of human uroguanylin: Interconversion between biologically active and inactive isomers. FEBS Lett. 1998, 421, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Schulz, A.; Marx, U.C.; Tidten, N.; Lauber, T.; Hidaka, Y.; Adermann, K. Side chain contributions to the interconversion of the topological isomers of guanylin-like peptides. J. Pept. Sci. 2005, 11, 319–330. [Google Scholar] [CrossRef]
- Akaji, K.; Fujino, K.; Tatsumi, T.; Kiso, Y. Total synthesis of human insulin by regioselective disulfide formation using the silyl chloride sulfoxide method. J. Am. Chem. Soc. 1993, 115, 11384–11392. [Google Scholar] [CrossRef]
- Katayama, H.; Hojo, H.; Ohira, T.; Ishii, A.; Nozaki, T.; Goto, K.; Nakahara, Y.; Takahashi, T.; Hasegawa, Y.; Nagasawa, H.; et al. Correct disulfide pairing is required for the biological activity of crustacean androgenic gland hormone (AGH): Synthetic studies of AGH. Biochemistry 2010, 49, 1798–1807. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Brunger, A.T.; Adams, P.D.; Clore, G.M.; DeLano, W.L.; Gros, P.; Grosse-Kunstleve, R.W.; Jiang, J.S.; Kuszewski, J.; Nilges, M.; Pannu, N.S.; et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 1998, 54, 905–921. [Google Scholar]
- Koradi, R.; Billeter, M.; Wuthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graph. 1996, 14, 51–55. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Rullmannn, J.A.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef] [PubMed]
Organic Solvents | pH | Temperature | Recovery (%) a |
---|---|---|---|
50% AcOH | 3 | 25 | 82 |
50% MeOH/0.1 M HCl | 2 | 25 | 74 |
50% MeOH | 7 | 25 | 30 |
50% MeOH/0.1 M NH3 aq | 9 | 25 | 28 |
50% i-PrOH/0.1 M HCl | 2 | 25 | 63 |
80% i-PrOH/0.1 M HCl | 2 | 25 | 62 |
50% THF/0.05% TFA | 2 | 25 | 71 |
50% THF/0.05% TFA | 2 | 30 | 69 |
50% THF/0.05% TFA | 2 | 40 | 64 |
50% THF/0.05% TFA | 2 | 50 | 54 |
50% THF/0.05% TFA | 2 | 60 | 36 |
50% THF/0.05% TFA | 2 | 70 | 25 |
50% THF/0.05% TFA | 2 | 80 | 19 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimamoto, S.; Fukutsuji, M.; Osumi, T.; Goto, M.; Toyoda, H.; Hidaka, Y. Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin. Molecules 2020, 25, 4798. https://doi.org/10.3390/molecules25204798
Shimamoto S, Fukutsuji M, Osumi T, Goto M, Toyoda H, Hidaka Y. Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin. Molecules. 2020; 25(20):4798. https://doi.org/10.3390/molecules25204798
Chicago/Turabian StyleShimamoto, Shigeru, Mayu Fukutsuji, Toi Osumi, Masaya Goto, Hiroshi Toyoda, and Yuji Hidaka. 2020. "Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin" Molecules 25, no. 20: 4798. https://doi.org/10.3390/molecules25204798
APA StyleShimamoto, S., Fukutsuji, M., Osumi, T., Goto, M., Toyoda, H., & Hidaka, Y. (2020). Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin. Molecules, 25(20), 4798. https://doi.org/10.3390/molecules25204798