Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. MAO-B Binding Affinity and LogD7.4 of Compounds 8–17
2.3. Docking Studies
3. Materials and Methods
3.1. tert-Butyl 4-(4-fluorobenzoyl)piperazine-1-carboxylate (2)
3.2. tert-Butyl 4-(6-fluoropyridin-2-yl)piperazine-1-carboxylate (3)
3.3. General Procedure for the Synthesis of tert-Butyl 4-phenylpiperazine-1-carboxylate (4–6)
3.4. General Procedure for the Synthesis of Final Compounds 8–17
3.5. In Vitro Binding Experiments
3.6. Docking Stimulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006, 7, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.; Frey, L.D.; Bläuenstein, P.; Krämer, G.; Siegel, A.; Weber, B.; Schubiger, P.A.; Wieser, H.G. Monoamine oxidase b single-photon emission tomography with [123i]Ro 43-0463: Imaging in volunteers and patients with temporal lobe epilepsy. Eur. J. Nucl. Med. 1998, 25, 464–470. [Google Scholar]
- Singer, T.P.; Ramsay, R.R. Flauoprotein structure and mechanism 2. monoamine oxidases: Old friends hold many surprises. FASEB J. 1995, 9, 605–610. [Google Scholar] [CrossRef]
- Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-b inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev. 2019, 39, 1603–1706. [Google Scholar] [CrossRef]
- Fowler, J.S.; Logan, J.; Volkow, N.D.; Wang, G.-J.; Macgregor, R.R.; Ding, Y.-S. Monoamine oxidase: Radiotracer development and human studies. In Molecular Nuclear Medicine: The Challenge of Genomics and Proteomics to Clinical Practice; Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, Y.-W., Wagner, H.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 457–476. [Google Scholar]
- Cesura, A.M.; Pletscher, A. The new generation of monoamine oxidase inhibitors. In Progress in Drug Research/Fortschritte Der Arzneimittelforschung/Progrès Des Recherches Pharmaceutiques; Mitsuhashi, S., Kojima, T., Nakanishi, N., Fujimoto, T., Goto, O., Miyusaki, S., Uematsu, T., Nakashima, M., Asahina, Y., Ishisaki, T., Eds.; Birkhäuser: Basel, Switzerland, 1992; pp. 171–297. [Google Scholar]
- Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Logan, J.; Pappas, N.; Shea, C.; Macgregor, R. Age-Related increases in brain monoamine oxidase b in living healthy human subjects. Neurobiol. Aging 1997, 18, 431–435. [Google Scholar] [CrossRef]
- Gulyás, B.; Pavlova, E.; Kása, P.; Gulya, K.; Bakota, L.; Várszegi, S.; Keller, É.; Horváth, M.C.; Nag, S.; Hermecz, I.; et al. Activated Mao-B in the brain of alzheimer patients, demonstrated by [11c]-L-Deprenyl using whole hemisphere autoradiography. Neurochem. Int. 2011, 58, 60–68. [Google Scholar] [CrossRef]
- Schöll, M.; Carter, S.F.; Westman, E.; Rodriguez-Vieitez, E.; Almkvist, O.; Thordardottir, S.; Wall, A.; Graff, C.; Långström, B.; Nordberg, A. Early astrocytosis in autosomal dominant alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 2015, 5, 16404. [Google Scholar] [CrossRef] [Green Version]
- Foley, P.; Gerlach, M.; Youdim, M.B.H.; Riederer, P. Mao-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders? Parkinsonism Relat. Disord. 2000, 6, 25–47. [Google Scholar] [CrossRef]
- Gabilondo, A.M.; Hostalot, C.; Garibi, J.M.; Meana, J.J.; Callado, L.F. Monoamine oxidase B activity is increased in human gliomas. Neurochem. Int. 2008, 52, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Miklya, I. The significance of selegiline/(−)-deprenyl after 50 years in research and therapy (1965–2015). Mol. Psychiatry 2016, 21, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Kersemans, K.; Van Laeken, N.; De Vos, F. Radiochemistry devoted to the production of monoamine oxidase (mao-a and mao-b) ligands for brain imaging with positron emission tomography. J. Label. Compd. Radiopharm. 2013, 56, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.S.; Logan, J.; Volkow, N.D.; Wang, G.-J. Translational neuroimaging: Positron emission tomography studies of monoamine oxidase. Mol. Imaging Biol. 2005, 7, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Johansson, A.; Engler, H.; Blomquist, G.; Scott, B.; Wall, A.; Aquilonius, S.-M.; Långström, B.; Askmark, H. Evidence for astrocytosis in als demonstrated by [11c](L)-Deprenyl-D2 Pet. J. Neurol. Sci. 2007, 255, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Murugan, N.A.; Chiotis, K.; Rodriguez-Vieitez, E.; Lemoine, L.; Ågren, H.; Nordberg, A. Cross-Interaction of tau pet tracers with monoamine oxidase B: Evidence from in silico modelling and in vivo imaging. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1369–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callado, L.F.; Garibi, J.M.; Meana, J.J. Gliomas: Role of monoamine oxidase b in diagnosis. In Tumors of the Central Nervous System, Volume 1: Gliomas: Glioblastoma (Part 1); Hayat, M.A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 53–59. [Google Scholar]
- Dahl, K.; Bernard-Gauthier, V.; Nag, S.; Varnäs, K.; Narayanaswami, V.; Mahdi Moein, M.; Arakawa, R.; Vasdev, N.; Halldin, C. Synthesis and preclinical evaluation of [18f]Fsl25.1188, a reversible pet radioligand for monoamine oxidase-B. Bioorganic Med. Chem. Lett. 2019, 29, 1624–1627. [Google Scholar] [CrossRef]
- Eckelman, W.C.; Mathis, C.A. Targeting proteins in vivo: In vitro guidelines. Nucl. Med. Biol. 2006, 33, 161–164. [Google Scholar] [CrossRef]
- Nikolic, K.; Mavridis, L.; Djikic, T.; Vucicevic, J.; Agbaba, D.; Yelekci, K.; Mitchell, J.B.O. Drug design for cns diseases: Polypharmacological profiling of compounds using cheminformatic, 3d-Qsar and virtual screening methodologies. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of Mao-B with antioxidant and neuroprotective activities for the treatment of parkinson’s disease. Bioorganic Chem. 2020, 97, 103707. [Google Scholar] [CrossRef]
- Pisani, L.; Muncipinto, G.; Miscioscia, T.F.; Nicolotti, O.; Leonetti, F.; Catto, M.; Caccia, C.; Salvati, P.; Soto-Otero, R.; Mendez-Alvarez, E.; et al. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: Development and biopharmacological profiling of 7-[(3-Chlorobenzyl)Oxy]-4-[(Methylamino)Methyl]-2h-Chromen-2-One methanesulfonate (Nw-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor. J. Med. Chem. 2009, 52, 6685–6706. [Google Scholar]
- Partyka, A.; Kurczab, R.; Canale, V.; Satała, G.; Marciniec, K.; Pasierb, A.; Jastrzębska-Więsek, M.; Pawłowski, M.; Wesołowska, A.; Bojarski, A.J.; et al. The impact of the halogen bonding on D2 and 5-Ht1a/5-Ht7 receptor activity of azinesulfonamides of 4-[(2-Ethyl)Piperidinyl-1-Yl]Phenylpiperazines with antipsychotic and antidepressant properties. Bioorganic Med. Chem. 2017, 25, 3638–3648. [Google Scholar] [CrossRef]
- Manetti, F.; Corelli, F.; Strappaghetti, G.; Botta, M. Arylpiperazines with affinity toward Alpha(1)-adrenergic receptors. Curr. Med. Chem. 2002, 9, 1303–1321. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.-S.; Hou, J.-W.; Liu, Y.; Ding, Y.; Zhang, Y.; Li, L.; Zhang, T. Design, Synthesis and evaluation of novel cinnamic acid derivatives bearing n-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 2017, 32, 776–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Sheetal, M.A.K.; Kumar, V. Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential mao inhibitors. Bioorganic Chem. 2018, 77, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Takao, K.; Toda, K.; Saito, T.; Sugita, Y. Synthesis of amide and ester derivatives of cinnamic acid and its analogs: Evaluation of their free radical scavenging and monoamine oxidase and cholinesterase inhibitory activities. Chem. Pharm. Bull. 2017, 65, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef]
- Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem. 2015, 26, 1–18. [Google Scholar] [CrossRef]
- Vella, A.; Mascalchi, M. Chapter 15—Nuclear medicine of the cerebellum. In Handbook of Clinical Neurology; Mario, M., Thierry, A., Huisman, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–266. [Google Scholar]
- Mossine, A.V.; Brooks, A.F.; Makaravage, K.J.; Miller, J.M.; Ichiishi, N.; Sanford, M.S.; Scott, P.J.H. Synthesis of [18f]arenes via the copper-mediated [18f]fluorination of boronic acids. Org. Lett. 2015, 17, 5780–5783. [Google Scholar] [CrossRef]
- Teodoro, R.; Scheunemann, M.; Deuther-Conrad, W.; Wenzel, B.; Fasoli, F.; Gotti, C.; Kranz, M.; Donat, C.; Patt, M.; Hillmer, A.; et al. A promising pet tracer for imaging of A7 nicotinic acetylcholine receptors in the brain: Design, synthesis, and in vivo evaluation of a dibenzothiophene-based radioligand. Molecules 2015, 20, 18387–18421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillmer, A.T.; Li, S.; Zheng, M.-Q.; Scheunemann, M.; Lin, S.-F.; Nabulsi, N.; Holden, D.; Pracitto, R.; Labaree, D.; Ropchan, J.; et al. Pet imaging of A7 nicotinic acetylcholine receptors: A comparative study of [18f]asem and [18f]Dbt-10 in nonhuman primates, and further evaluation of [18f]Asem in humans. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1–9. [Google Scholar] [CrossRef]
- Pike, V.W. Pet Radiotracers: Crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wodtke, R.; Hauser, C.; Ruiz-Gómez, G.; Jäckel, E.; Bauer, D.; Lohse, M.; Wong, A.; Pufe, J.; Ludwig, F.-A.; Fischer, S.; et al. Nε-Acryloyllysine piperazides as irreversible inhibitors of transglutaminase 2: Synthesis, structure–Activity relationships, and pharmacokinetic profiling. J. Med. Chem. 2018, 61, 4528–4560. [Google Scholar] [CrossRef]
- Jones, C.G.; Wynn, D.; Nairne, J.; Mokkapati, U.P.; Newington, I.M.; Ran-Gaswamz, C.; Jose, J.; Johansson, S. Heterocyclic Compounds as Imaging Probes of Tau Pathology. WO2013090497A1, 20 June 2013. [Google Scholar]
- Zhuang, R.; Gao, L.; Lv, X.; Xi, J.; Sheng, L.; Zhao, Y.; He, R.; Hu, X.; Shao, Y.; Pan, X.; et al. Exploration of novel piperazine or piperidine constructed non-covalent peptidyl derivatives as proteasome inhibitors. Eur. J. Med. Chem. 2017, 126, 1056–1070. [Google Scholar] [CrossRef]
- Saura, J.; Kettler, R.; Da Prada, M.; Richards, J.G. Quantitative enzyme radioautography with 3h-Ro 41-1049 and 3h-Ro 19-6327 in vitro: Localization and abundance of Mao-a and Mao-B in Rat Cns, peripheral organs, and human brain. J. Neurosci. 1992, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Villalobos, A. Strategies to facilitate the discovery of novel cns pet ligands. EJNMMI Radiopharm. Chem. 2016, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine Oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorganic Chem. 2015, 62, 22–29. [Google Scholar] [CrossRef]
- Pollock, J.; Borkin, D.; Lund, G.; Purohit, T.; Dyguda-Kazimierowicz, E.; Grembecka, J.; Cierpicki, T. Rational design of orthogonal multipolar interactions with fluorine in protein–Ligand complexes. J. Med. Chem. 2015, 58, 7465–7474. [Google Scholar] [CrossRef]
- Zhou, P.; Zou, J.; Tian, F.; Shang, Z. Fluorine Bonding—How does it work in protein−ligand interactions? J. Chem. Inf. Modeling 2009, 49, 2344–2355. [Google Scholar] [CrossRef]
- Carradori, S.; Silvestri, R. New frontiers in selective human Mao-B inhibitors. J. Med. Chem. 2015, 58, 6717–6732. [Google Scholar] [CrossRef]
- Harkcom, W.T.; Bevan, D.R. Molecular docking of inhibitors into monoamine oxidase B. Biochem. Biophys. Res. Commun. 2007, 360, 401–406. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein–Ligand docking using gold. Proteins Struct. Funct. Bioinform. 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the final compounds 8–17 are available from the authors. |
Compound | R1 | R2 | Fitness Goldscore a | IC50 (µM) b | logDcal |
---|---|---|---|---|---|
8 | / | phenyl | 72.6 | >10 | 3.55 |
9 | 6-(2-fluoropyridyl) | phenyl | 67.3 | >10 | 3.53 |
10 | 5-(2-fluoropyridyl) | phenyl | 68.1 | >10 | 2.56 |
11 | 4-(2-fluoropyridyl) | phenyl | 66.4 | >10 | 2.85 |
12 | 3-(2-fluoropyridyl) | phenyl | 70.0 | >10 | 2.50 |
13 | / | 2-fluorophenyl | 75.8 | >10 | 3.50 |
14 | 6-(2-fluoropyridyl) | 2-fluorophenyl | 70.4 | >10 | 3.47 |
15 | 5-(2-fluoropyridyl) | 2-fluorophenyl | 70.5 | >10 | 2.50 |
16 | 4-(2-fluoropyridyl) | 2-fluorophenyl | 67.0 | >10 | 2.80 |
17 | 3-(2-fluoropyridyl) | 2-fluorophenyl | 70.7 | >10 | 2.44 |
l-Deprenyl | 51.3 | 19.75 ± 4.60 c | 2.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
I. Jevtić, I.; Lai, T.H.; Z. Penjišević, J.; Dukić-Stefanović, S.; B. Andrić, D.; Brust, P.; Kostić-Rajačić, S.V.; Teodoro, R. Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. Molecules 2020, 25, 4941. https://doi.org/10.3390/molecules25214941
I. Jevtić I, Lai TH, Z. Penjišević J, Dukić-Stefanović S, B. Andrić D, Brust P, Kostić-Rajačić SV, Teodoro R. Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. Molecules. 2020; 25(21):4941. https://doi.org/10.3390/molecules25214941
Chicago/Turabian StyleI. Jevtić, Ivana, Thu Hang Lai, Jelena Z. Penjišević, Sladjana Dukić-Stefanović, Deana B. Andrić, Peter Brust, Sladjana V. Kostić-Rajačić, and Rodrigo Teodoro. 2020. "Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding" Molecules 25, no. 21: 4941. https://doi.org/10.3390/molecules25214941
APA StyleI. Jevtić, I., Lai, T. H., Z. Penjišević, J., Dukić-Stefanović, S., B. Andrić, D., Brust, P., Kostić-Rajačić, S. V., & Teodoro, R. (2020). Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding. Molecules, 25(21), 4941. https://doi.org/10.3390/molecules25214941