Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years
Abstract
:1. Introduction
1.1. Moderate Alcohol Consumption
1.2. Wine Polyphenols in Human Health
2. Results
2.1. Hypertension
2.2. Type 2 Diabetes Mellitus
2.3. Dyslipidemia
2.4. Cancer
2.5. Dementia
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients 2019, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Bergmann, M.M.; Boeing, H.; Li, C.; Capewell, S. Healthy lifestyle behaviors and all-cause mortality among adults in the United States. Prev. Med. 2012, 55, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loef, M.; Walach, H. The combined effects of healthy lifestyle behaviors on all cause mortality: A systematic review and meta-analysis. Prev. Med. 2012, 55, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Yu, C.; Guo, Y.; Bian, Z.; Han, Y.; Yang, L.; Chen, Y.; Du, H.; Li, H.; Liu, F.; et al. Adherence to a healthy lifestyle and all-cause and cause-specific mortality in Chinese adults: A 10-year prospective study of 0.5 million people. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 98–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Schoufour, J.; Wang, D.D.; Dhana, K.; Pan, A.; Liu, X.; Song, M.; Liu, G.; Shin, H.J.; Sun, Q.; et al. Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. BMJ 2020, 368, l6669. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Rodríguez González, M.; Loreto, M.; Marcos, T.; Marcos, F.M.; Sadek, I.M.; Roldan, C.C.; Tárraga López, P.J. Efectos de la dieta mediterránea sobre los factores de riesgo cardiovascular (Effects of the Mediterranean diet on the cardiovascular risk factors). J. Negat. No Posit. Results 2019, 4, 25–51. (In Spanish) [Google Scholar]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Odphp. 2015–2020 Dietary Guidelines for Americans; Department of Agriculture (USDA) Department of Health and Human Services (HHS) Press: Washington, DC, USA, 2015.
- Soltani, S.; Jayedi, A.; Shab-Bidar, S.; Becerra-Tomas, N.; Salas-Salvadó, J. Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Heal. Nutr. 2013, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.; Sheron, N. No level of alcohol consumption improves health. Lancet 2018, 392, 987–988. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Status Report on Alcohol Consumption, Harm and Policy Responses in 30 European Countries 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Fedirko, V.; Tramacere, I.; Bagnardi, V.; Rota, M.; Scotti, L.; Islami, F.; Negri, E.; Straif, K.; Romieu, I.; La Vecchia, C.; et al. Alcohol drinking and colorectal cancer risk: An overall and dose–response meta-analysis of published studies. Ann. Oncol. 2011, 22, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Tollefsbol Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2019, 20, 4567. [Google Scholar]
- Akinwumi, B.C.; Bordun, K.-A.M.; Anderson, H.D. Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018, 19, 792. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jia, Z.; Pan, M.-H.; Babu, P.V.A. Natural Products for the Prevention of Oxidative Stress-Related Diseases: Mechanisms and Strategies. Oxidative Med. Cell. Longev. 2016, 2016, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Teli, M.K.; Lee, J.H.; Gaire, B.P.; Kim, M.-H.; Do, M.H. A Stilbenoid Isorhapontigenin as a Potential Anti-Cancer Agent against Breast Cancer through Inhibiting Sphingosine Kinases/Tubulin Stabilization. Cancers 2019, 11, 1947. [Google Scholar] [CrossRef] [Green Version]
- Beetch, M.; Harandi-Zadeh, S.; Shen, K.; Stefanska, B. Stilbenoids as dietary regulators of the cancer epigenome. Nutr. Epigenomics 2019, 353–370. [Google Scholar] [CrossRef]
- Amor, S.; Châlons, P.; Aires, V.; Delmas, D. Polyphenol Extracts from Red Wine and Grapevine: Potential Effects on Cancers. Diseases 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, D.C.F.; Rangel, L.P.; Martins-Dinis, M.M.D.D.C.; Ferretti, G.D.D.S.; Ferreira, V.F.; Silva, J.L. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020, 25, 893. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Health and Behavior: Research, Practice, and P. Health and Behavior; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Matsushita, H.; Takaki, A. Alcohol and hepatocellular carcinoma. BMJ Open Gastroenterol. 2019, 6, e000260. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, A.; Gea, A.; Ruíz-Canela, M.; Toledo, E.; Beunza, J.J.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A. Mediterranean Alcohol-Drinking Pattern and the Incidence of Cardiovascular Disease and Cardiovascular Mortality: The SUN Project. Nutrients 2015, 7, 9116–9126. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.E. Associations Between Socioeconomic Factors and Alcohol Outcomes. Alcohol Res. Curr. Rev. 2016, 38, 83–94. [Google Scholar]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, M.G.; Hasan, B.O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Heal. 2017, 2, e108–e120. [Google Scholar] [CrossRef] [Green Version]
- Roerecke, M.; Tobe, S.W.; Kaczorowski, J.; Bacon, S.L.; Vafaei, A.; Hasan, O.S.M.; Krishnan, R.J.; Raifu, A.O.; Rehm, J. Sex-Specific Associations Between Alcohol Consumption and Incidence of Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. J. Am. Hear. Assoc. 2018, 7, e008202. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- Kloner, R.A.; Rezkalla, S.H. To Drink or Not to Drink? That Is the Question. Circulation 2007, 116, 1306–1317. [Google Scholar] [CrossRef]
- Rimm, E.B.; Ellison, R.C. Alcohol in the Mediterranean diet. Am. J. Clin. Nutr. 1995, 61, 1378S–1382S. [Google Scholar] [CrossRef]
- Cavallini, G.; Straniero, S.; Donati, A.; Bergamini, E. Resveratrol requires red wine polyphenols for optimum antioxidant activity. J. Nutr. Heal. Aging 2015, 20, 540–545. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Snopek, L.; Mlček, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of Red Wine Consumption to Human Health Protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef] [Green Version]
- Banc, R.; Socaciu, C.; Miere, D.; Filip, L.; Cozma, A.; Stanciu, O.; Loghin, F. Benefits of Wine Polyphenols on Human Health: A Review. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2014, 71, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Latruffe, N.; Rifler, J.P. Wine and Vine Components and Health. Diseases 2019, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordova, A.C.; E Sumpio, B. Polyphenols are medicine: Is it time to prescribe red wine for our patients? Int. J. Angiol. 2009, 18, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Mitrevska, K.; Grigorakis, S.; Loupassaki, S.; Calokerinos, A. Antioxidant Activity and Polyphenolic Content of North Macedonian Wines. Appl. Sci. 2020, 10, 2010. [Google Scholar] [CrossRef] [Green Version]
- Chiva-Blanch, G.; Badimon, L. Benefits and Risks of Moderate Alcohol Consumption on Cardiovascular Disease: Current Findings and Controversies. Nutrients 2019, 12, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Alcohol Abuse and Alcoholism (NIAAA). What Is A Standard Drink? Available online: https://www.niaaa.nih.gov/what-standard-drink (accessed on 27 September 2020).
- Monico, N. Alcohol by Volume (ABV): Beer, Wine, & Liquor. Available online: https://www.alcohol.org/statistics-information/abv/ (accessed on 24 October 2020).
- International Agency for Research on Cancer. Personal Habits and Indoor Combustions. Volume 100 E. A review of human carcinogens. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Geneva, Switzerland, 2012; Volume 100 Pt E, pp. 1–538. ISBN 9789283213222. [Google Scholar]
- Piano, M.R. Alcohol’s Effects on the Cardiovascular System. Alcohol Res. Curr. Rev. 2017, 38, 219–241. [Google Scholar]
- Klatsky, A.L. Alcohol and cardiovascular diseases: Where do we stand today? J. Intern. Med. 2015, 278, 238–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, C.; Miedema, M.D.; Ofman, P.; Gaziano, J.M.; Sesso, H.D. An Expanding Knowledge of the Mechanisms and Effects of Alcohol Consumption on Cardiovascular Disease. J. Cardiopulm. Rehabil. Prev. 2014, 34, 159–171. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.M.; Murphy, K.J. Definition of the Mediterranean Diet; A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Status Report on Alcohol and Health. 2018. Available online: https://www.who.int/publications/i/item/global-status-report-on-alcohol-and-health-2018 (accessed on 27 September 2020).
- O’Keefe, E.L.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog. Cardiovasc. Dis. 2018, 61, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Chiva-Blanch, G.; Arranz, S.; Lamuela-Raventos, R.M.; Estruch, R. Effects of Wine, Alcohol and Polyphenols on Cardiovascular Disease Risk Factors: Evidences from Human Studies. Alcohol Alcohol. 2013, 48, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Antai, D.; Lopez, G.B.; Antai, J.; Anthony, D.S. Alcohol Drinking Patterns and Differences in Alcohol-Related Harm: A Population-Based Study of the United States. Biomed Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Saliba, A.J.; Prenzler, P.D. Should Red Wine Be Considered a Functional Food? Compr. Rev. Food Sci. Food Saf. 2010, 9, 530–551. [Google Scholar] [CrossRef]
- Chaiyasong, S.; Huckle, T.; Mackintosh, A.-M.; Meier, P.; Parry, C.D.H.; Callinan, S.; Cuong, P.V.; Kazantseva, E.; Gray-Phillip, G.; Parker, K.; et al. Drinking patterns vary by gender, age and country-level income: Cross-country analysis of the International Alcohol Control Study. Drug Alcohol Rev. 2018, 37, S53–S62. [Google Scholar] [CrossRef] [PubMed]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits. Nutr. Metab. Insights 2016, 9, 51–57. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; García-Carpintero, E.G.; Viñas, M.G. Aroma Fingerprint Characterisation of La Mancha Red Wines. S. Afr. J. Enol. Vitic. 2015, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Fairbairn, S.; Smit, A.; Jacobson, D.; Prior, B.; Bauer, F. Environmental Stress and Aroma Production During Wine Fermentation. S. Afr. J. Enol. Vitic. 2016, 35, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Du, B.; Li, J. Aroma Compounds in Wine. In Grape and Wine Biotechnology; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Rapp, A.; Mandery, H. Wine aroma. Cell. Mol. Life Sci. 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Gil, J.; Mateo, J.J.; Jimenez, M.; Pastor, A.; Huerta, T. Aroma Compounds in Wine as Influenced by Apiculate Yeasts. J. Food Sci. 1996, 61, 1247–1250. [Google Scholar] [CrossRef]
- Payling, L.; Fraser, K.; Loveday, S.; Sims, I.; Roy, N.; McNabb, W. The effects of carbohydrate structure on the composition and functionality of the human gut microbiota. Trends Food Sci. Technol. 2020, 97, 233–248. [Google Scholar] [CrossRef]
- Apolinar-Valiente, R.; Williams, P.; Doco, T. Recent advances in the knowledge of wine oligosaccharides. Food Chem. 2020, 128330. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Dharmesh, S.M. Pectic Oligosaccharide from tomato exhibiting anticancer potential on a gastric cancer cell line: Structure-Function relationship. Carbohydr. Polym. 2017, 160, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Rocha, M.A.M.; Saraiva, J.A.; Coimbra, M.A. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr. Polym. 2014, 99, 415–422. [Google Scholar] [CrossRef]
- Kang, O.L.; Ghani, M.; Hassan, O.; Rahmati, S.; Ramli, N. Novel agaro-oligosaccharide production through enzymatic hydrolysis: Physicochemical properties and antioxidant activities. Food Hydrocoll. 2014, 42, 304–308. [Google Scholar] [CrossRef]
- Cincotta, F.; Verzera, A.; Tripodi, G.; Condurso, C. Determination of Sesquiterpenes in Wines by HS-SPME Coupled with GC-MS. Chromatography 2015, 2, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr. Rev. Food Sci. Food Saf. 2019, 19, 247–281. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; Da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharm. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Tatman, D.; Mo, H. Volatile isoprenoid constituents of fruits, vegetables and herbs cumulatively suppress the proliferation of murine B16 melanoma and human HL-60 leukemia cells. Cancer Lett. 2002, 175, 129–139. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Carluccio, M.A.; Grieco, F. Wine Polyphenols and Health. Refer. Ser. Phytochem. 2019, 2019, 1135–1155. [Google Scholar]
- Mudnic, I.; Modun, D.; Rastija, V.; Vukovic, J.; Brizić, I.; Katalinic, V.; Kozina, B.; Medić-Šarić, M.; Boban, M. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2010, 119, 1205–1210. [Google Scholar] [CrossRef]
- Vauzour, D.; Houseman, E.J.; George, T.; Corona, G.; Garnotel, R.; Jackson, K.G.; Sellier, C.; Gillery, P.; Kennedy, O.B.; Lovegrove, J.A.; et al. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers. Br. J. Nutr. 2009, 103, 1168–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eun, H.J.; Sung, R.K.; In, K.H.; Tae, Y.H. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J. Agric. Food Chem. 2007, 55, 9800–9804. [Google Scholar]
- Niimi, J.; Parker, M.; Smith, P.A. Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust. J. Grape Wine Res. 2008, 14, 153–161. [Google Scholar] [CrossRef]
- Guerrero, R.F.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Wine, Resveratrol and Health: A Review. Nat. Prod. Commun. 2009, 4, 635–658. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharm. 2012, 83, 6–15. [Google Scholar] [CrossRef]
- Hui, C.; Qi, X.; Qianyong, Z.; Xiaoli, P.; Jundong, Z.; Mantian, M. Flavonoids, Flavonoid Subclasses and Breast Cancer Risk: A Meta-Analysis of Epidemiologic Studies. PLoS ONE 2013, 8, e54318. [Google Scholar] [CrossRef]
- Bo, Y.; Sun, J.; Wang, M.; Ding, J.; Lu, Q.; Yuan, L. Dietary flavonoid intake and the risk of digestive tract cancers: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 24836. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2013, 111, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Je, Y. Flavonoid intake and mortality from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. Clin. Nutr. Espen 2017, 20, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Mateus, N.; Machado, J.M.; De Freitas, V. Development changes of anthocyanins inVitis vinifera grapes grown in the Douro Valley and concentration in respective wines. J. Sci. Food Agric. 2002, 82, 1689–1695. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [Green Version]
- Azzini, E.; Giacometti, J.; Russo, G.L. Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies. Oxid. Med. Cell. Longev. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Weisel, T.; Baum, M.; Eisenbrand, G.; Dietrich, H.; Will, F.; Stockis, J.-P.; Kulling, S.; Rüfer, C.; Johannes, C.; Janzowski, C. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol. J. 2006, 1, 388–397. [Google Scholar] [CrossRef]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Forester, S.C.; Waterhouse, A.L. Metabolites Are Key to Understanding Health Effects of Wine Polyphenolics. J. Nutr. 2009, 139, 1824S–1831S. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic Contents and Compositions in Skins of Red Wine Grape Cultivars among Various Genetic Backgrounds and Originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. Oxidative Med. Cell. Longev. 2015, 2015, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.A.; Arango, M.; Abderrahmane, S.; Lambert, E.; Tourette, C.; Catoire, H.; Néri, C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. 2005, 37, 349–350. [Google Scholar] [CrossRef]
- Fernández-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Villar, E.C. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Zhang, P.; He, S.; Huang, D. Effect of resveratrol on blood pressure: A meta-analysis of randomized controlled trials. Clin. Nutr. 2015, 34, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hausenblas, H.A.; Schoulda, J.A.; Smoliga, J.M. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol. Nutr. Food Res. 2014, 59, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Feringa, H.H.; Laskey, D.A.; Dickson, J.E.; Coleman, C.I. The Effect of Grape Seed Extract on Cardiovascular Risk Markers: A Meta-Analysis of Randomized Controlled Trials. J. Am. Diet. Assoc. 2011, 111, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Kozela, M.; Stefler, D.; Bobak, M.; Pajak, A. Dietary polyphenol intake and risk of type 2 diabetes in the Polish arm of the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study. Br. J. Nutr. 2017, 118, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Rienks, J.; Barbaresko, J.; Oluwagbemigun, K.; Schmid, M.; Nöthlings, U. Polyphenol exposure and risk of type 2 diabetes: Dose-Response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018, 108, 49–61. [Google Scholar] [CrossRef] [Green Version]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients 2018, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gepner, Y.; Henkin, Y.; Schwarzfuchs, D.; Golan, R.; Durst, R.; Shelef, I.; Harman-Boehm, I.; Spitzen, S.; Witkow, S.; Novack, L.; et al. Differential Effect of Initiating Moderate Red Wine Consumption on 24-h Blood Pressure by Alcohol Dehydrogenase Genotypes: Randomized Trial in Type 2 Diabetes. Am. J. Hypertens. 2015, 29, 476–483. [Google Scholar] [CrossRef]
- Mori, T.A.; Burke, V.; Zilkens, R.R.; Hodgson, J.M.; Beilin, L.J.; Puddey, I.B. The effects of alcohol on ambulatory blood pressure and other cardiovascular risk factors in type 2 diabetes. J. Hypertens. 2016, 34, 421–428. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, S.T.; Wylie, L.J.; Morgan, P.T.; Vanhatalo, A.; Jones, A.M. A randomised controlled trial exploring the effects of different beverages consumed alongside a nitrate-rich meal on systemic blood pressure. Nutr. Heal. 2018, 24, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Roth, I.; Casas, R.; Ribó-Coll, M.; Estruch, R. Consumption of Aged White Wine under a Veil of Flor Reduces Blood Pressure-Increasing Plasma Nitric Oxide in Men at High Cardiovascular Risk. Nutrients 2019, 11, 1266. [Google Scholar] [CrossRef] [Green Version]
- García-Conesa, M.T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andres-Lacueva, C.; De Pascual-Teresa, S.; Mena, P.; Ristic, A.K.; Hollands, W.J.; et al. Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses. Int. J. Mol. Sci. 2018, 19, 694. [Google Scholar] [CrossRef] [Green Version]
- Weaver, S.R.; Rendeiro, C.; McGettrick, H.M.; Philp, A.; Lucas, S.J.E. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. Eur. J. Nutr. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Chen, X.; Bao, L. Effects of wine on blood pressure, glucose parameters, and lipid profile in type 2 diabetes mellitus. Medicine 2019, 98, e15771. [Google Scholar] [CrossRef]
- Gepner, Y.; Golan, R.; Harman-Boehm, I.; Henkin, Y.; Schwarzfuchs, D.; Shelef, I.; Durst, R.; Kovsan, J.; Bolotin, A.; Leitersdorf, E.; et al. Effects of Initiating Moderate Alcohol Intake on Cardiometabolic Risk in Adults With Type 2 Diabetes. Ann. Intern. Med. 2015, 163, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Abraham, K.A.; Kearney, M.L.; Reynolds, L.J.; Thyfault, J.P. Red wine enhances glucose-dependent insulinotropic peptide (GIP) and insulin responses in type 2 diabetes during an oral glucose tolerance test. Diabetol. Int. 2015, 7, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Zhang, Y. Specific types of alcoholic beverage consumption and risk of type 2 diabetes: A systematic review and meta-analysis. J. Diabetes Investig. 2016, 8, 56–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerdeman, J.; Del Rio, D.; Calani, L.; Eringa, E.C.; Smulders, Y.M.; Serné, E.H. Red wine polyphenols do not improve obesity-associated insulin resistance: A randomized controlled trial. Diabetes Obes. Metab. 2017, 20, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Golan, R.; Shai, I.; Gepner, Y.; Harman-Boehm, I.; Schwarzfuchs, D.; Spence, J.D.; Párraga, G.; Buchanan, D.; Witkow, S.; Friger, M.; et al. Effect of wine on carotid atherosclerosis in type 2 diabetes: A 2-year randomized controlled trial. Eur. J. Clin. Nutr. 2018, 72, 871–878. [Google Scholar] [CrossRef]
- Taborsky, M.; Ostadal, P.; Adam, T.; Moravec, O.; Gloger, V.; Schee, A.; Skála, T. Red or white wine consumption effect on atherosclerosis in healthy individuals (In Vino Veritas study). Bratisl. Med. J. 2017, 118, 292–298. [Google Scholar] [CrossRef]
- Di Renzo, L.; Cioccoloni, G.; Salimei, P.S.; Ceravolo, I.; De Lorenzo, A.; Gratteri, S. Alcoholic Beverage and Meal Choices for the Prevention of Noncommunicable Diseases: A Randomized Nutrigenomic Trial. Oxidative Med. Cell. Longev. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Fang, X.; Wei, J.; He, X.; An, P.; Wang, H.; Jiang, L.; Shao, D.; Liang, H.; Li, Y.; Wang, F.; et al. Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Cancer 2015, 51, 2820–2832. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Zhu, H.-C.; Guo, Q.; Shu, Z.; Bao, X.-H.; Sun, F.; Qin, Q.; Yang, X.; Zhang, C.; Cheng, H.-Y.; et al. Dose-Dependent Associations between Wine Drinking and Breast Cancer Risk—Meta-Analysis Findings. Asian Pac. J. Cancer Prev. 2016, 17, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Vartolomei, M.; Kimura, S.; Ferro, M.; Foerster, B.; Abufaraj, M.; Briganti, A.; Karakiewicz, P.I.; Shariat, S.F. The impact of moderate wine consumption on the risk of developing prostate cancer. Clin. Epidemiol. 2018, 10, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Fan, H.; Han, Z.; Liu, Y.; Wang, Y.; Ge, Z. Wine consumption and colorectal cancer risk. Eur. J. Cancer Prev. 2019, 28, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Wan, Y.; Tan, C.; Li, J.; Tan, L.; Yu, J.-T. Alcohol consumption and dementia risk: A dose–response meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.B.; Fuchs, F.D.; Moraes, R.S.; Bredemeier, M.; Duncan, B.B. Alcohol intake and blood pressure. J. Hypertens. 1998, 16, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.S.; Gago, B.; Barbosa, R.M.; Cavaleiro, C.; Rocha, B.S. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: Potential impact on gastric motility. Free Radic. Biol. Med. 2015, 82, 160–166. [Google Scholar] [CrossRef]
- Álvarez, E.; Rodiño-Janeiro, B.K.; Jerez, M.; Ucieda-Somoza, R.; Núñez, M.J.; González-Juanatey, J.R. Procyanidins from grape pomace are suitable inhibitors of human endothelial NADPH oxidase. J. Cell. Biochem. 2012, 113, 1386–1396. [Google Scholar] [CrossRef]
- Elies, J.; Cuíñas, A.; García-Morales, V.; Orallo, F.; Campos-Toimil, M. Trans-resveratrol simultaneously increases cytoplasmic Ca2+ levels and nitric oxide release in human endothelial cells. Mol. Nutr. Food Res. 2011, 55, 1237–1248. [Google Scholar] [CrossRef]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Alcohol intake, consumption pattern and beverage type, and the risk of Type 2 diabetes. Diabet. Med. 2006, 23, 690–697. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Camargo, C.A.; Manson, J.E.; Willett, W.C.; Rimm, E.B. Alcohol Drinking Patterns and Risk of Type 2 Diabetes Mellitus Among Younger Women. Arch. Intern. Med. 2003, 163, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
- Grønbaek, M. Alcohol, Type of Alcohol, and All-Cause and Coronary Heart Disease Mortality. Ann. N. Y. Acad. Sci. 2002, 957, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Lam, K.S.; Xu, A. Moderate wine consumption in the prevention of metabolic syndrome and its related medical complications. Endocr. Metab. Immune Disord. Drug Targets 2008, 8, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Nova, E.; Martin, I.S.M.; Díaz, L.E.; Marcos, A. Wine and beer within a moderate alcohol intake is associated with higher levels of HDL-c and adiponectin. Nutr. Res. 2018, 63, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, H.K.; Akçay, Y.D.; Güvenc, U.; Sözmen, E.Y. Protection capacity against low-density lipoprotein oxidation and antioxidant potential of some organic and non-organic wines. Int. J. Food Sci. Nutr. 2004, 55, 351–362. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Espinosa-Martos, I.; Rodríguez, J.M.; Jiménez-Girón, A.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. Moderate Consumption of Red Wine Can Modulate Human Intestinal Inflammatory Response. J. Agric. Food Chem. 2014, 62, 10567–10575. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Expert Review Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef] [PubMed]
- Caprio, G.G.; Picascia, D.; Dallio, M.; Vitiello, P.P.; Giunta, E.F.; De Falco, V.; Abenavoli, L.; Procopio, A.C.; Famiglietti, V.; Martinelli, E.; et al. Light Alcohol Drinking and the Risk of Cancer Development: A Controversial Relationship. Rev. Recent Clin. Trials 2020, 15, 164–177. [Google Scholar] [CrossRef]
- Iii, G.A.E.; Gamez, N.G.E., Jr.; Calderon, O.; Moreno-Gonzalez, I. Modifiable Risk Factors for Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 146. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, M.; Barbagallo, M. Nutritional prevention of cognitive decline and dementia. Acta Biomed. 2018, 89, 276–290. [Google Scholar]
Reference | Design, Subjects (n), Follow-up | Population | Intervention/Dose | Outcomes | Main Results |
---|---|---|---|---|---|
Y. Gepner et al. [104] | Randomized controlled trial, n = 54, 6 months | Adults, T2D, alcohol abstainers | 150 mL water, white wine, or red wine | BP (24-h ABPM) | Moderate daily red wine intake (150 mL) had no effect on mean daily BP, but showed transient hypotensive response at midnight (3–4 h after ingestion), decreasing SBP −10.6 mmHg (95% CI −14.1 to −0.6; p = 0.03) and DBP −7.7 mmHg (−11.8 to 0.9; p = 0.076). |
T.A. Mori et al. [105] | Randomized controlled trial, cross-over design, n = 28, 16 weeks | Adults, T2DM, men and post-menopausal women, regular drinkers | Red wine or DRW 230 mL/day for women and 300 mL/d for men, or water. | Effect of wine consumption on 24 h ambulatory BP, heart rate and other markers | Red wine significantly increased awake SBP (2.5 ± 1.2 mmHg; p = 0.033) and DBP (1.9 ± 0.7 mmHg; p = 0.008) compared to water and decreased DBP overnight (2.0 ± 0.8 mmHg; p = 0.016) compared to DRW. Nonetheless, there was no significant overall effect of red wine on mean 24 h SBP or DBP. Red wine had no effect on TC, TG, HDL-C, LDL-C, fasting glucose and insulin levels, or HOMA-IR score. |
S. McDonagh et al. [106] | Randomized, crossover trial, n = 12, 2 weeks | Healthy normotensive men | 175 mL red wine, vodka or water | BP response to NO3− rich salad and red wine | Red wine and NO3− rich salad lowered SBP at 2 h (−5 mmHg) and 5 h (−4 mmHg) and DBP (2–4 mmHg) after intake. |
I. Roth et al. [107] | Randomized controlled trial, cross-over design, n = 38, 10 weeks | Adults, men, T2DM or ≥3 cardiovascular risk factors | 30g ethanol from white wine or gin | Effect of white wine on BP and plasma NO concentration | White wine decreased SBP (−4.91 mmHg, 95% CI −9.41 to −0.42; p = 0.033) and DBP (−2.90, 95% CI −5.50 to −0.29; p = 0.030) significantly compared to gin (p < 0.040); and significantly increased plasma NO concentrations (27.86, 95% CI −6.86 to 62.59; p = 0.013). |
M.T. García-Conesa et al. [108] | Meta-analysis of 128 human randomized controlled trials (n = 5538) | Adults, distributed over five continents | 250 to 400 mL red wine | Association between intake of wine and other foods on different biomarkers of cardio-metabolic risk | Anthocyanin rich products (wine/red grapes) reduced systolic (−3.31 mmHg; p = 0.014) and diastolic (−1.50 mmHg; p = 0.002) BP, but increased Hb1Ac (+0.26; p = 0.026) |
S. Weaver et al. [109] | Meta-analysis, 37 studies | Adults, healthy or T2DM/obesity/MS | RWP supplementation (dose ND) | Effect of RWP on vascular health | RWP significantly improved SBP (−2.6 mmHg, 95% CI −4.8 to −0.4; p = 0.010), especially in at risk population (−3.2 mmHg, 95% CI −5.7 to −0.8; p = 0.010) |
J. Ye et al. [110] | Meta-analysis, 9 studies, N/D | Adults, T2DM | Red wine 120–360 mL/d | Effect of wine intake on BP, glucose parameters and lipid profile in T2DM | Red wine intake significantly reduced DBP (MD 0.10, 95% CI 0.01–0.20; p = 0.03). No significant differences in glucose or lipid parameters. |
Y. Gepner et al. [111] | Randomized controlled trial, n = 224, 2 years | Adults, 40–75 years with T2DM | 150 mL of red wine or white wine | Changes in lipid profile (HDL-C, apolipoprotein (a)1, TC/HDL-C ratio) and glycemic control (FPG, HOMA-IR) | Red wine intake increased HDL-C (2.9 mg/dL, 95% CI 1.6–2.2 mg/dL; p < 0.001) and apolipoprotein (a)1 (0.03 g/L, 95% CI 0–0.06 g/L; p = 0.05), and decreased TC/HDL-C ratios (0.27, 95% CI −0.52 to −0.01; p = 0.039). White wine decreased FPG (−17.2 mg/dL, 95% CI −28.9 to −5.5 mg/dL; p = 0.004) and HOMA-IR score (−1.2, 95% CI −2.1 to −0.2; p = 0.019) |
K. Abraham et al. [112] | Randomized controlled trial, n = 9, 2 weeks | Adults, T2DM and pre-diabetic | 263 mL red wine or water | Acute effect of red wine in glycemic control | Greater insulin iAUC response after wine intake (50%; p < 0.05), but no change in glucose iAUC (p = 0.82) |
J. Huang et al. [113] | Meta-analysis, 13 prospective studies, 397,296 subjects | Adults, T2DM or healthy | Stratified in 0–10 g/day, 10–20 g/day or >20 g/day | Risk of T2DM | Wine intake was associated with 15% reduction in T2DM risk (RR 0.85, 95% CI 0.80–0.89), with a peak risk reduction at 20–30g/d |
J. Woerdeman et al. [114] | Randomized controlled trial, n = 30, 8 weeks | Adults, obese (BMI ≥30 kg/m2), white ethnicity, healthy | RWP extract 600 mg/d or placebo | Effect of supplementation of RWP on insulin sensitivity in obese adults | RWP supplementation did not alter insulin sensitivity nor lipid profile compared to placebo (M-value (mg/kg/min) 3.3, CI 2.4–4.8 vs. 2.9, CI 2.8–5.9; p = 0.65, respectively) |
R. Golan et al. [115] | Randomized controlled trial, n = 224, 2 years | Adults, T2DM, abstainers | 16.9 g of ethanol from dry red wine (150 mL), or 15.8 g from white wine (150 mL) | Effect of moderate wine intake in atherosclerosis | Moderate wine intake was associated with no progression in carotid total plaque volume (−1.2 mm3, SD 16.9, CI −3.8 to 6.2; p = 0.6 for white wine; −1.3, mm3, SD 17.6, CI −3.4 to 6.0; p = 0.5 for red wine) and with a small regression among those with higher carotid plaque burden at baseline (mean −0.11; p = 0.04) |
M. Taborsky et al. [116] | Randomized controlled trial, n 157, 12 months | Adults, healthy, mild to moderate cardiovascular risk | Red or white wine, 0.2 L/day in women <70 kg and 0.3 L/d in women <70 kg and men | Effect of regular red and wine intake in HDL-C and other markers of atherosclerosis | HDL-C significantly decreased at 6 months in the white wine group (−0.14 (SD 0.41); p = 0.005), no changes for red wine. LDL-C significantly decreased in both groups at 6 months (−0.39 (0.74); p < 0.001 for white wine and −0.27 (0.68); p < 0.001 for red wine) and at 12 months (−0.24 (0.73); p = 0.003 for white wine and −0.24 (0.78); p = 0.013 for red wine) compared with baseline. A significant reduction in TC was observed at 6 months in both groups (−0.32 (1.13); p = 0.017 for white wine and −0.33 (0.82); p = 0.001 for red wine), but only for red wine at 12 months (−0.24 (0.82); p = 0.016). |
L. di Renzo et al. [117] | Randomized controlled trial, n 55, 1 day | Healthy adults | 30 g of ethanol from red wine, white wine or vodka | Effect of ethanol and polyphenols present in alcoholic beverages on oxidative status when eating an antioxidant meal | Red wine intake during a HFM significantly reduced Ox-LDL-C levels (−4.97 ± 33.18; p < 0.05) compared with HFM alone. Red wine significantly up-regulated CAT gene expression (fold change 4.04) |
Fang et al. [118] | Meta-analysis, 76 observational studies, n = 6,316,385 subjects, 11.4 years (3.3–30y) | Adults, general population | Dose ND | Association between gastric cancer and dietary factors | Alcohol consumption increased gastric cancer risk (RR 1.15, 95% CI 1.01–1.31), nonetheless wine did not significantly increase this risk (RR 1.02, 95% CI 0.77–1.34). |
J.Y. Chen et al. [119] | Meta-analysis, 26 observational studies, n = 18,106 subjects | Adult women with breast cancer | 1 drink or 12.5 g of ethanol | Association between wine dose and breast cancer risk | Wine intake increased breast cancer risk (RR 1.36; 95% CI 1.20–1.54; p < 0.001), with a dose-response association, showing a 0.59% increase for each increment of 1g/day of ethanol from wine. However, risk decreased in women consuming <80g/day of wine (10g ethanol), with lowest risk at 40g/day of wine (5g/day ethanol). |
M.D. Vartolomei et al. [120] | Meta-analysis, 174 studies, n = 455,413 subjects | Adults, overall population | Moderate red wine intake (ND) | Effect of red wine on prostate cancer development | Moderate red wine consumption was associated with lower risk of prostate cancer (RR 0.88, 95% CI 0.78–0.999; p = 0.047) |
W. Xu et al. [121] | Meta-analysis, 17 observational studies, n = 12,110 subjects | Adults, general population | Stratified in non-drinkers plus occasional drinkers (<0.5 drinks/day), light to moderate drinker (<2 drinks/day) and heavy drinkers (≥2 drinks/day) | Effects of wine intake on colorectal cancer risk | Any wine consumption did not affect colorectal cancer risk versus nondrinkers (RR 0.99, 95% CI 0.89–1.10). No difference among men and women (0.88, CI 0.66–1.18 and 0.83, CI 0.67–1.03, respectively), red or white wine (0.98, CI 0.68–1.40, and 0.95, CI 0.69–1.32, respectively) nor drinking category (light to moderate 0.93, CI 0.80–1.08, and heavy drinking 1.00, CI 0.86–1.16). |
L. Schwingshackl et al. [34] | Meta-analysis, 83 prospective studies, n = 2,130,753 subjects | Adults, overall population | Moderate red wine intake in a Mediterranean diet (ND) | Cancer risk and cancer mortality risk | Inverse association for moderate alcohol intake and cancer risk (RR 0.89, 95% CI 0.85–0.93) |
W. Xu et al. [122] | Meta-analysis, 16 observational studies, 3–25 years | Adults, general population | Stratified in light (<7 drinks/week), light-to-moderate (< 14drinks/ week), moderate (7–14 drinks/ week) moderate-to-heavy (>7 drinks/week) and heavy drinkers (>14 drinks/week) | Association between quantity of alcohol intake and risk of dementia | U-shaped association between alcohol consumption and risk of dementia, Wine showed a trend towards a protective effect for dementia, for current drinkers versus never drinkers (RR 0.67, 95% CI 0.48–0.94; p = 0.2) or light-to-moderate drinker versus non-drinkers (RR 0.58, 95% CI 0.39–0.87; p = 0.196). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minzer, S.; Estruch, R.; Casas, R. Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules 2020, 25, 5045. https://doi.org/10.3390/molecules25215045
Minzer S, Estruch R, Casas R. Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules. 2020; 25(21):5045. https://doi.org/10.3390/molecules25215045
Chicago/Turabian StyleMinzer, Simona, Ramon Estruch, and Rosa Casas. 2020. "Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years" Molecules 25, no. 21: 5045. https://doi.org/10.3390/molecules25215045
APA StyleMinzer, S., Estruch, R., & Casas, R. (2020). Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules, 25(21), 5045. https://doi.org/10.3390/molecules25215045