NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nitrogen Inversion
2.2. EPR Study of Alkoxyamines Homolysis
2.3. NMR Study of Alkoxyamine Homolysis
2.4. Homolysis of Alkoxyamines in the Absence of Scavengers (Epimerization)
2.5. Homolysis of Alkoxyamines in the Presence of Scavengers
- The rate constants for the reaction of 2RS/SR and 2RR/SS with PhSH are slightly higher than the rate constants for their epimerization. This is not surprising and can be explained by the influence of the different medium with a large excess of the spin trap. In contrast, the rate constants for the reaction of 2RS/SR and especially of 2RR/SS with BME are substantially lower than the epimerization rate constants.
- In contrast to the behavior of 2RS/SR and 2RR/SS (see item above), the rate constant for the reaction of 3 with BME is significantly higher than rate constant for its reaction with PhSH.
- Quite unexpected is the much lower reactivity of 2RR/SS with BME in comparison with its diastereomer 2RS/SR. It can hardly be explained by steric differences in the substrates: the starting diastereomers have very similar energies, and the transition states should be close to the corresponding alkyl and nitroxide radicals, which are identical for both diastereomers.
- The decay rates of the alkoxyamines monotonically increase with increasing BME concentration but do not reach a plateau even at a 100-fold excess of BME.
3. Experimental
Synthesis (Scheme 7)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, D.; Rizzardo, E.; Cacioli, P. Polymerization Process and Polymers Produced thereby. U.S. Patent 4,581,429, 8 April 1986. [Google Scholar]
- Matyjaszewski, K. Controlled radical polymerization. Curr. Opin. Solid State Mater. Sci. 1996, 1, 769–776. [Google Scholar] [CrossRef]
- Studer, A. Tin-free radical chemistry using the persistent radical effect: Alkoxyamine isomerization, addition reactions and polymerizations. Chem. Soc. Rev. 2004, 33, 267–273. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688. [Google Scholar] [CrossRef] [PubMed]
- Studer, A.; Schulte, T. Nitroxide-mediated radical processes. Chem. Rec. 2005, 5, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Charleux, B.; Nicolas, J. Water-soluble SG1-based alkoxyamines: A breakthrough in controlled/living free-radical polymerization in aqueous dispersed media. Polymer 2007, 48, 5813–5833. [Google Scholar] [CrossRef] [Green Version]
- Grubbs, R.B. Nitroxide-mediated radical polymerization: Limitations and versatility. Polym. Rev. 2011, 51, 104–137. [Google Scholar] [CrossRef]
- Tebben, L.; Studer, A. Nitroxides: Applications in Synthesis and in Polymer Chemistry. Angew. Chem. Int. Ed. 2011, 50, 5034–5068. [Google Scholar] [CrossRef]
- Gigmes, D.; Marque, S. Nitroxide-Mediated Polymerization and its Applications. In Encyclopedia of Radicals in Chemistry, Biology, and Materials; Chatgilialoglu, C., Studer, A., Eds.; Wiley: Chichester, UK, 2012. [Google Scholar]
- Tsarevsky, N.V.; Sumerlin, B.S. (Eds.) Fundamentals of Controlled/Living Radical Polymerization; Royal Society Chemistry: London, UK, 2013; pp. 1–364. [Google Scholar]
- Astolfi, P.; Greci, L.; Stipa, P.; Rizzoli, C.; Ysacco, C.; Rollet, M.; Autissier, L.; Tardy, A.; Guillaneuf, Y.; Gigmes, D. Indolinic nitroxides: Evaluation of their potential as universal control agents for nitroxide mediated polymerization. Polym. Chem. 2013, 4, 3694–3704. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235. [Google Scholar] [CrossRef]
- Tardy, A.; Delplace, V.; Siri, D.; Lefay, C.; Harrisson, S.; de Fatima Albergaria Pereira, B.; Charles, L.; Gigmes, D.; Nicolas, J.; Guillaneuf, Y. Scope and limitations of the nitroxide-mediated radical ring-opening polymerization of cyclic ketene acetals. Polym. Chem. 2013, 4, 4776–4787. [Google Scholar] [CrossRef]
- Pan, X.; Tasdelen, M.A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. Photomediated controlled radical polymerization. Prog. Polym. Sci. 2016, 62, 73–125. [Google Scholar] [CrossRef] [Green Version]
- Marque, S. Influence of the nitroxide structure on the homolysis rate constant of alkoxyamines: A Taft—Ingold analysis. J. Org. Chem. 2003, 68, 7582–7590. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Kramer, A.; Marque, S.R.; Nesvadba, P. Steric and Polar Effects of the Cyclic Nitroxyl Fragment on the C–ON Bond Homolysis Rate Constant. Macromolecules 2005, 38, 9974–9984. [Google Scholar] [CrossRef]
- Audran, G.; Bikanga, R.; Brémond, P.; Joly, J.-P.; Marque, S.R.A.; Nkolo, P. Normal, Leveled, and Enhanced Steric Effects in Alkoxyamines Carrying a β-Phosphorylated Nitroxyl Fragment. J. Org. Chem. 2017, 82, 5702–5709. [Google Scholar] [CrossRef]
- Gryn’ova, G.; Lin, C.Y.; Coote, M.L. Which side-reactions compromise nitroxide mediated polymerization? Polym. Chem. 2013, 4, 3744–3754. [Google Scholar] [CrossRef]
- Bertin, D.; Gigmes, D.; Marque, S.R.; Tordo, P. Polar, steric, and stabilization effects in alkoxyamines C–ON bond homolysis: A multiparameter analysis. Macromolecules 2005, 38, 2638–2650. [Google Scholar] [CrossRef]
- Audran, G.; Bagryanskaya, E.; Bagryanskaya, I.; Edeleva, M.; Marque, S.R.; Parkhomenko, D.; Tretyakov, E.; Zhivetyeva, S. Zinc (II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials. ChemistrySelect 2017, 2, 3584–3593. [Google Scholar] [CrossRef]
- Hodgson, J.L.; Yeh Lin, C.; Coote, M.L.; Marque, S.R.A.; Matyjaszewski, K. Linear Free-Energy Relationships for the Alkyl Radical Affinities of Nitroxides: A Theoretical Study. Macromolecules 2010, 43, 3728–3743. [Google Scholar] [CrossRef]
- Bremond, P.; Marque, S.R.A. First proton triggered C–ON bond homolysis in alkoxyamines. Chem. Commun. 2011, 47, 4291–4293. [Google Scholar] [CrossRef] [Green Version]
- Edeleva, M.V.; Kirilyuk, I.A.; Zhurko, I.F.; Parkhomenko, D.A.; Tsentalovich, Y.P.; Bagryanskaya, E.G. pH-Sensitive C–ON bond homolysis of alkoxyamines of imidazoline series with multiple ionizable groups as an approach for control of Nitroxide Mediated Polymerization. J. Org. Chem. 2011, 76, 5558–5573. [Google Scholar] [CrossRef]
- Brémond, P.; Koïta, A.; Marque, S.R.A.; Pesce, V.; Roubaud, V.; Siri, D. Chemically Triggered C–ON Bond Homolysis of Alkoxyamines. Quaternization of the Alkyl Fragment. Org. Lett. 2012, 14, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Audran, G.; Bikanga, R.; Bremond, P.; Edeleva, M.; Joly, J.P.; Marque, S.R.A.; Nkolo, P.; Roubaud, V. How intramolecular hydrogen bonding (IHB) controls the C–ON bond homolysis in alkoxyamines. Org. Biomol. Chem. 2017, 15, 8425–8439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audran, G.; Bagryanskaya, E.; Bagryanskaya, I.; Brémond, P.; Edeleva, M.; Marque, S.R.; Parkhomenko, D.; Tretyakov, E.; Zhivetyeva, S. C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper (ii) salts. Inorg. Chem. Front. 2016, 3, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Audran, G.; Bagryanskaya, E.G.; Bagryanskaya, I.Y.; Edeleva, M.; Kaletina, P.; Marque, S.R.A.; Parkhomenko, D.; Tretyakov, E.V.; Zhivetyeva, S.I. The effect of the oxophilic Tb(III) cation on CON bond homolysis in alkoxyamines. Inorg. Chem. Commun. 2018, 91, 5–7. [Google Scholar] [CrossRef]
- Audran, G.; Bagryanskaya, E.; Bagryanskaya, I.; Edeleva, M.; Joly, J.-P.; Marque, S.R.A.; Iurchenkova, A.; Kaletina, P.; Cherkasov, S.; Hai, T.T.; et al. How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Adv. 2019, 9, 25776–25789. [Google Scholar] [CrossRef] [Green Version]
- Audran, G.; Brémond, P.; Franconi, J.-M.; Marque, S.R.A.; Massot, P.; Mellet, P.; Parzy, E.; Thiaudière, E. Alkoxyamines: A new family of pro-drugs against cancer. Concept for theranostics. Org. Biomol. Chem. 2014, 12, 719–723. [Google Scholar] [CrossRef]
- Gryn’ova, G.; Smith, L.M.; Coote, M.L. Computational design of pH-switchable control agents for nitroxide mediated polymerization. Phys. Chem. Chem. Phys. 2017, 19, 22678–22683. [Google Scholar] [CrossRef]
- Klinska, M.; Smith, L.M.; Gryn’ova, G.; Banwell, M.G.; Coote, M.L. Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions. Chem. Sci. 2015, 6, 5623–5627. [Google Scholar] [CrossRef] [Green Version]
- Hill, N.S.; Coote, M.L. Rational design of photo-cleavable alkoxyamines for polymerization and synthesis. Phys. Chem. Chem. Phys. 2020, 22, 19680–19686. [Google Scholar] [CrossRef]
- Edeleva, M.V.; Marque, S.R.A.; Bagryanskaya, E.G. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization. Russ. Chem. Rev. 2018, 87, 328–349. [Google Scholar] [CrossRef]
- Ananchenko, G.S.; Fischer, H. Decomposition of model alkoxyamines in simple and polymerizing systems. I. 2, 2, 6, 6-tetramethylpiperidinyl-N-oxyl-based compounds. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3604–3621. [Google Scholar] [CrossRef]
- Ananchenko, G.S.; Souaille, M.; Fischer, H.; Le Mercier, C.; Tordo, P. Decomposition of model alkoxyamines in simple and polymerizing systems. II. Diastereomeric N-(2-methylpropyl)-N-(1-diethyl-phosphono-2, 2-dimethyl-propyl)-aminoxyl-based compounds. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 3264–3283. [Google Scholar] [CrossRef]
- Ananchenko, G.; Marque, S.; Gigmes, D.; Bertin, D.; Tordo, P. Diastereomeric excess upon cleavage and reformation of diastereomeric alkoxyamines. Org. Biomol. Chem. 2004, 2, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Marque, S.; Le Mercier, C.; Tordo, P.; Fischer, H. Factors Influencing the C–O– Bond Homolysis of Trialkylhydroxylamines. Macromolecules 2000, 33, 4403–4410. [Google Scholar] [CrossRef]
- Edeleva, M.; Marque, S.R.; Bertin, D.; Gigmes, D.; Guillaneuf, Y.; Morozov, S.V.; Bagryanskaya, E.G. Hydrogen-transfer reaction in nitroxide mediated polymerization of methyl methacrylate: 2, 2-Diphenyl-3-phenylimino-2, 3-dihydroindol-1-yloxyl nitroxide (DPAIO) vs. TEMPO. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 6828–6842. [Google Scholar] [CrossRef]
- Edeleva, M.V.; Kirilyuk, I.A.; Zubenko, D.P.; Zhurko, I.F.; Marque, S.R.A.; Gigmes, D.; Guillaneuf, Y.; Bagryanskaya, E.G. Kinetic study of H-atom transfer in imidazoline-, imidazolidine-, and pyrrolidine-based alkoxyamines: Consequences for nitroxide-mediated polymerization. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6579–6595. [Google Scholar] [CrossRef]
- Edeleva, M.; Marque, S.R.; Bertin, D.; Gigmes, D.; Guillaneuf, Y.; Bagryanskaya, E. Chemically Induced Dynamic Nuclear Polarization during the Thermolysis of Alkoxyamines: A New Approach to Detect the Occurrence of H-Transfer Reactions. Polymers 2010, 2, 364–377. [Google Scholar] [CrossRef]
- Tormyshev, V.M.; Genaev, A.M.; Sal’nikov, G.E.; Rogozhnikova, O.Y.; Troitskaya, T.I.; Trukhin, D.V.; Mamatyuk, V.I.; Fadeev, D.S.; Halpern, H.J. Triarylmethanols bearing bulky aryl groups and the NOESY/EXSY experimental observation of two-ring-flip mechanism for helicity reversal of molecular propellers. Eur. J. Org. Chem. 2012, 3, 623–629. [Google Scholar] [CrossRef]
- Stephenson, D.S.; Binsch, G. Iterative computer analysis of complex exchange-broadened NMR bandshapes. J. Magn. Reson. (1969) 1978, 32, 145–152. [Google Scholar] [CrossRef]
- Busfield, W.K.; Jenkins, I.D.; Thang, S.H.; Moad, G.; Rizzardo, E.; Solomon, D.H. Slow nitrogen inversion–N–O rotation in 2-alkoxy-1,1,3,3-tetramethylisoindolines. J. Chem. Soc. Chem. Commun. 1985, 18, 1249–1250. [Google Scholar] [CrossRef]
- Anderson, J.E.; Casarini, D.; Corrie, J.E.T.; Lunazzi, L. The measurement of the one-fold rotational barrier of eclipsed bonds. A dynamic NMR determination of N–O or N–CH2 bond rotation in N-alkoxy- or N-alkyl-2,2,6,6-tetramethylpiperidines. J. Chem. Soc. Perkin Trans. 2 1993, 7, 1299–1304. [Google Scholar] [CrossRef]
- Bagryanskaya, E.G.; Marque, S.R.A. Chapter 2 Kinetic Aspects of Nitroxide Mediated Polymerization. In Nitroxide Mediated Polymerization: From Fundamentals to Applications in Materials Science; Gigmes, D., Ed.; The Royal Society of Chemistry: London, UK, 2016; pp. 45–113. [Google Scholar]
- Kothe, T.; Marque, S.; Martschke, R.; Popov, M.; Fischer, H. Radical reaction kinetics during homolysis of N-alkoxyamines: Verification of the persistent radical effect. J. Chem. Soc. Perkin Trans. 2 1998, 7, 1553–1560. [Google Scholar] [CrossRef]
- Keisuke, M.; Takao, Y. Studies on Stable Free Radicals. III. Reactions of Stable Nitroxide Radicals with S-Radicals Derived from Benzenethiols and Thiamine. Bull. Chem. Soc. Jpn. 1969, 42, 1942–1947. [Google Scholar]
- Reznikov, V.A.; Volodarskii, L.B. Synthesis of bifunctional derivatives of nitroxyl radicals of imidazoline. Chem. Heterocycl. Compd. 1990, 26, 643–648. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Woodworth, B.E.; Zhang, X.; Gaynor, S.G.; Metzner, Z. Simple and efficient synthesis of various alkoxyamines for stable free radical polymerization. Macromolecules 1998, 31, 5955–5957. [Google Scholar] [CrossRef]
- SADABS; Version 2008/1; Bruker AXS: Madison, WI, USA, 2008.
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Rowland, R.S.; Taylor, R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. J. Phys. Chem. 1996, 100, 7384–7391. [Google Scholar] [CrossRef]
- Murray, J.; Politzer, P. Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions. Croat. Chem. Acta 2009, 82, 267–275. [Google Scholar]
- Guerret, O.; Couturier, J.-L.; Chauvin, F.; El-Bouazzy, H.; Bertin, D.; Gigmes, D.; Marque, S.; Fischer, H.; Tordo, P. Influence of Solvent and Polymer Chain Length on the Hemolysis of SG1-Based Alkoxyamines. In Advances in Controlled/Living Radical Polymerization; American Chemical Society: Washington, DC, USA, 2003; Volume 854, pp. 412–423. [Google Scholar]
- Jeffrey, G.A.; Saenger, W. (Eds.) Hydrogen Bonding in Proteins. In Hydrogen Bonding in Biological Structures; Springer: Berlin/Heidelberg, Germany, 1991; pp. 351–393. [Google Scholar]
- Rockenbauer, A.; Györ, M.; Hideg, K.; Hankovszky, H.O. Investigation of naturally abundant 17O hyperfine satellites in the electron spin resonance spectrum of 5- and 6-membered cyclic nitroxide (aminoxyl) radicals. J. Chem. Soc. Chem. Commun. 1985, 23, 1651–1653. [Google Scholar] [CrossRef]
- Scilab Enterprises. Scilab: Free and Open Source Software for Numerical Computation; Version 5.5.0.; Scilab Enterprises: Orsay, France, 2012. [Google Scholar]
- Shernyukov, A.V.; Genaev, A.M.; Salnikov, G.E.; Shubin, V.G.; Rzepa, H.S. Elevated reaction order of 1,3,5-tri-tert-butylbenzene bromination as evidence of a clustered polybromide transition state: A combined kinetic and computational study. Org. Biomol. Chem. 2019, 17, 3781–3789. [Google Scholar] [CrossRef] [PubMed]
- Laikov, D.N.; Ustynyuk, Y.A. PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. 2005, 54, 820–826. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laikov, D.N. A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 2005, 416, 116–120. [Google Scholar] [CrossRef]
- Rackers, J.A.; Wang, Z.; Lu, C.; Laury, M.L.; Lagardère, L.; Schnieders, M.J.; Piquemal, J.-P.; Ren, P.; Ponder, J.W. Tinker 8: Software Tools for Molecular Design. J. Chem. Theory Comput. 2018, 14, 5273–5289. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds alkoxyamines 2RS/SR, 2RR/SS and 3 are available from the authors. |
None | TEMPO | BME | PhSH | |
---|---|---|---|---|
2RS/SR | 10.5 b | 5.0 c | 8.3 | 16.3 |
2RR/SS | 6.0 b | 2.2 c | 2.5 | 7.0 |
3 | 0.33 c | 0.81 d | 0.36 e | |
1• | 21 | 6400 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherkasov, S.; Parkhomenko, D.; Genaev, A.; Salnikov, G.; Edeleva, M.; Morozov, D.; Rybalova, T.; Kirilyuk, I.; Marque, S.R.A.; Bagryanskaya, E. NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules 2020, 25, 5080. https://doi.org/10.3390/molecules25215080
Cherkasov S, Parkhomenko D, Genaev A, Salnikov G, Edeleva M, Morozov D, Rybalova T, Kirilyuk I, Marque SRA, Bagryanskaya E. NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules. 2020; 25(21):5080. https://doi.org/10.3390/molecules25215080
Chicago/Turabian StyleCherkasov, Sergey, Dmitriy Parkhomenko, Alexander Genaev, Georgii Salnikov, Mariya Edeleva, Denis Morozov, Tatyana Rybalova, Igor Kirilyuk, Sylvain R. A. Marque, and Elena Bagryanskaya. 2020. "NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines" Molecules 25, no. 21: 5080. https://doi.org/10.3390/molecules25215080
APA StyleCherkasov, S., Parkhomenko, D., Genaev, A., Salnikov, G., Edeleva, M., Morozov, D., Rybalova, T., Kirilyuk, I., Marque, S. R. A., & Bagryanskaya, E. (2020). NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules, 25(21), 5080. https://doi.org/10.3390/molecules25215080