Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine
Abstract
:1. Introduction
2. Results and Discussion
2.1. The CEM Characteristics of Different Oil Samples
2.2. Features Extraction of Oil Samples Based on PCA
2.3. Spectra Classification Results
3. Materials and Methods
3.1. Samples Preparation
3.2. Weathering Experiments
3.3. Water Samples
3.4. Analytical Technique
3.5. Principal Components Analysis (PCA)
3.6. Probabilistic Neural Networks (PNNs)
3.7. Genic Algorithm Optimization SVM Parameters Algorithm (GA-SVM)
3.7.1. The Support Vector Machine Algorithm
3.7.2. The Flowchart of the GA-SVM Algorithm
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Profumo, A.; Gorroni, A.; Guarnieri, S.A.; Mellerio, G.G.; Cucca, L.; Merli, D. GC-MS qualitative analysis of the volatile, semivolatile and volatilizable fractions of soil evidence for forensic application: A chemical fingerprinting. Talanta 2020, 219, 121304. [Google Scholar] [CrossRef] [PubMed]
- Sales, C.; Portolés, T.; Johnsen, L.; Danielsen, M.; Beltran, J. Olive oil quality classification and measurement of its organoleptic attributes by untargeted GC–MS and multivariate statistical-based approach. Food Chem. 2019, 271, 488–496. [Google Scholar] [CrossRef] [PubMed]
- De Oteyza, T.G.; Grimalt, J.O. GC and GC–MS characterization of crude oil transformation in sediments and microbial mat samples after the 1991 oil spill in the Saudi Arabian Gulf coast. Environ. Pollut. 2006, 139, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yan, B.; Zhang, X.; Chang, X.; Li, M. Study the diffusion characteristics of rejuvenator oil in aged asphalt binder by image thresholding and GC–MS tracer analysis. Constr. Build. Mater. 2020, 249, 118782. [Google Scholar] [CrossRef]
- Wang, Z.; Li, K.; Fingas, M.; Sigouin, L.; Ménard, L. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques. J. Chromatogr. A 2002, 971, 173–184. [Google Scholar] [CrossRef]
- Danish, M.; Nizami, M. Complete fatty acid analysis data of flaxseed oil using GC-FID method. Data Brief 2019, 23, 103845. [Google Scholar] [CrossRef] [PubMed]
- Ayyldz, M.F.; Fndkolu, M.S. A simple and efficient preconcentration method based on vortex assisted reduced graphene oxide magnetic nanoparticles for the sensitive determination of endocrine disrupting compounds in different water and baby food samples by GC-FID. J. Food Compos. Anal. 2020, 88, 103431. [Google Scholar] [CrossRef]
- Da Silva, S.A.; Sampaio, G.R.; Torres, E.A.F.D.S. Optimization and validation of a method using UHPLC-fluorescence for the analysis of polycyclic aromatic hydrocarbons in cold-pressed vegetable oils. Food Chem. 2017, 221, 809–814. [Google Scholar] [CrossRef]
- Ariffin, A.A.; Ghazali, H.; Kavousi, P. Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil. Food Chem. 2014, 154, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Obisesan, K.A.; Jiménez-Carvelo, A.M.; Cuadros-Rodríguez, L.; Ruisánchez, I.; Callao, M.P. HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil. Talanta 2017, 170, 413–418. [Google Scholar] [CrossRef]
- Shi, X.; Ma, J.; Zheng, R.; Wang, C.; Kronfeldt, H.-D. An improved self-assembly gold colloid film as surface-enhanced Raman substrate for detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution. J. Raman Spectrosc. 2012, 43, 1354–1359. [Google Scholar] [CrossRef]
- Shi, X.; Kwon, Y.-H.; Ma, J.; Zheng, R.; Wang, C.; Kronfeldt, H.-D. Trace analysis of polycyclic aromatic hydrocarbons using calixarene layered gold colloid film as substrates for surface-enhanced Raman scattering. J. Raman Spectrosc. 2012, 44, 41–46. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Zhang, B.; He, S.; Zhao, M. Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Mar. Pollut. Bull. 2013, 71, 64–68. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, L.; Zhang, Z.; Wu, K.; Xu, Z.; Zhou, C. Conflicting sterane and aromatic maturity parameters in Neogene light oils, eastern Chepaizi High, Junggar Basin, NW China. Org. Geochem. 2014, 76, 48–61. [Google Scholar] [CrossRef]
- Zhao, P.; Rui, H. A simple and quick method to detect adulterated sesame oil using 3D fluorescence spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 245, 118948. [Google Scholar]
- Divya, O.; Mishra, A.K. Chemometric Study of Excitation—Emission Matrix Fluorescence Data: Quantitative Analysis of Petrol—Kerosene Mixtures. Appl. Spectrosc. 2008, 62, 753–758. [Google Scholar] [CrossRef]
- Palombi, L.; Alderighi, D.; Cecchi, G.; Raimondi, V.; Toci, G.; Lognoli, D. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping. Opt. Express 2013, 21, 14736–14746. [Google Scholar] [CrossRef]
- Rayner, D.M.; Szabo, A.G. Time-resolved laser fluorosensors: A laboratory study of their potential in the remote characterization of oil. Appl. Opt. 1978, 17, 1624. [Google Scholar] [CrossRef]
- Insausti, M.; Romano, C.; Pistonesi, M.F.; Band, B.S.F. Simultaneous determination of quality parameters in biodiesel/diesel blends using synchronous fluorescence and multivariate analysis. Microchem. J. 2013, 108, 32–37. [Google Scholar] [CrossRef]
- Bugden, J.; Yeung, C.; Kepkay, P.; Lee, K. Application of ultraviolet fluorometry and excitation–emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 2008, 56, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Mirnaghi, F.S.; Soucy, N.; Hollebone, B.P.; Brown, C.E. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis. Chemosphere 2018, 208, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.K.; Mishra, A.K. Inner filter effect mediated red-shift in synchronous and total synchronous fluorescence spectra as a tool to monitor quality of oils and petrochemicals. Fuel 2020, 267, 117174. [Google Scholar] [CrossRef]
- Patra, D. Concentration dependent red shift: Qualitative and quantitative investigation of motor oils by synchronous fluorescence scan. Talanta 2001, 53, 783–790. [Google Scholar] [CrossRef]
- Patra, D. Distinguishing motor oils at higher concentration range by evaluating total fluorescence quantum yield as a novel sensing tool. Sens. Actuators B Chem. 2008, 129, 632–638. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Z.; Guo, L. Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition. Mar. Pollut. Bull. 2013, 66, 164–175. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, L.; Shiller, A.M.; Lohrenz, S.E.; Asper, V.L.; Osburn, C.L. Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. Mar. Chem. 2013, 148, 10–21. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Li, W.-D.; Luan, X.-N.; Zhang, D.-Y.; Zhang, J.-L.; Zheng, R. [Fingerprint discrimination technique of spill oil based on concentration auxiliary parameter fluorescence spectra]. Guang Pu Xue Yu Guang Pu Fen Xi 2010, 30, 2700–2705. [Google Scholar]
- Wang, C.; Shi, X.; Li, W.; Wang, L.; Zhang, J.; Yang, C.; Wang, Z. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy. Mar. Pollut. Bull. 2016, 104, 322–328. [Google Scholar] [CrossRef]
- Phaneendra, K.B.L.N. A new framework for hyperspectral image classification using Gabor embedded patch based convolution neural network. Infrared Phys. Technol. 2020, 110, 103455. [Google Scholar] [CrossRef]
- Jaouher, B.; Lotfi, S. Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations. Eng. Appl. Artif. Intell. 2015, 42, 67–81. [Google Scholar]
- Zhou, X.; Jiang, W.; Tian, Y.; Shi, Y. Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 2010, 73, 2234–2246. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Song, M.; Tao, D. Multi-task proximal support vector machine. Pattern Recognit. 2015, 48, 3249–3257. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Zhang, B.-B.; Yang, H.-Y. Active SVM-based relevance feedback using multiple classifiers ensemble and features reweighting. Eng. Appl. Artif. Intell. 2013, 26, 368–381. [Google Scholar] [CrossRef]
- Xu, K.-K.; Li, H.-X.; Yang, H.-D. Dual least squares support vector machines based spatiotemporal modeling for nonlinear distributed thermal processes. J. Process. Control. 2017, 54, 81–89. [Google Scholar] [CrossRef]
- Gangsar, P.; Tiwari, R. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms. Mech. Syst. Signal Process. 2017, 94, 464–481. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Elcoroaristizabal, S.; Ocaña-González, J.A.; García-González, D.; Amigo, J.M.; Callejón, R.M. Characterization and authentication of Spanish PDO wine vinegars using multidimensional fluorescence and chemometrics. Food Chem. 2017, 230, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.M.; Tsai, H.H.; Yen, C.Y. SVM-PSO based rotation-invariant image texture classification in SVD and DWT domains. Eng. Appl. Artif. Intell. 2016, 52, 96–107. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, W.; Wang, B.; Chen, X. Intelligent fault diagnosis of rotating machinery using support vector machine with ant colony algorithm for synchronous feature selection and parameter optimization. Neurocomputing 2015, 167, 260–279. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.; Wu, J.; Zhang, Q.; Liao, G.; Su, L. Using GA-SVM for defect inspection of flip chips based on vibration signals. Microelectron. Reliab. 2018, 81, 159–166. [Google Scholar] [CrossRef]
- Gallo, C.; Capozzi, V.; Crescenzio, G.; Vito, C. Feature Selection with Non Linear PCA: A Neural Network Approach. J. Appl. Math. Phys. 2019, 7, 2537–2554. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Hoshiai, Y. Application of principal component analysis for parsimonious summarization of dea inputs and/or outputs. J. Oper. Res. Soc. Japan 1997, 40, 466–478. [Google Scholar] [CrossRef] [Green Version]
- Altınel, B.; Ganiz, M.C.; Diri, B. A corpus-based semantic kernel for text classification by using meaning values of terms. Eng. Appl. Artif. Intell. 2015, 43, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Huang, A.; Qiang, X. Improved neural networks based on genetic algorithm for pulse recognition. Comput. Biol. Chem. 2020, 88, 107315. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z.-C.; Wang, S.; Ji, G.; Yang, J. Preclinical Diagnosis of Magnetic Resonance (MR) Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM). Entropy 2015, 17, 1795–1813. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Cao, W.; Cheng, C. Research of Recognition Method of Discrete Wavelet Feature Extraction and PNN Classification of Rats FT-IR Pancreatic Cancer Data. J. Anal. Methods Chem. 2014, 2014, 564801. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Su, H.; Li, Y.; Li, X.; Liao, J.; Niu, J.; Lv, P.; Zhou, B. Stylized Aesthetic QR Code. IEEE Trans. Multimed. 2019, 21, 1960–1970. [Google Scholar] [CrossRef]
- Bi, K.; Qiu, T. An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method. Chin. J. Chem. Eng. 2019, 27, 1888–1894. [Google Scholar] [CrossRef]
- Zhang, D.; Han, J.; Zhao, L.; Meng, D. Leveraging Prior-Knowledge for Weakly Supervised Object Detection Under a Collaborative Self-Paced Curriculum Learning Framework. Int. J. Comput. Vis. 2018, 127, 363–380. [Google Scholar] [CrossRef]
- Abe, S. Fuzzy support vector machines for multilabel classification. Pattern Recognit. 2015, 48, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, G.; Wang, J.; Yang, S.; Guo, L.; Yan, W. GA-SVM based feature selection and parameters optimization for BCI research. In Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011; pp. 580–583. [Google Scholar]
- Wang, S.-T.; Yuan, Y.-Y.; Zhu, C.-Y.; Kong, D.; Wang, Y.-T. Discrimination of polycyclic aromatic hydrocarbons based on fluorescence spectrometry coupled with CS-SVM. Measurement 2019, 139, 475–481. [Google Scholar] [CrossRef]
GA-SVM | PNNs | ||
---|---|---|---|
the size of the population | 20 | the spread of radial basis functions | 0.1 |
the maximum iteration number | 200 | ||
the mutation rate | 0.9 | ||
the penalty coefficient C | [0,100] | ||
the Gaussian kernel | [0,100] |
Name | Target Label | Classification Accuracy (%) [Right Samples/Samples] | |
---|---|---|---|
PNNs | GA-SVM | ||
Crude oil | 1 | 100% [10/10] | 100% [10/10] |
0#diesel | 2 | 90% [9/10] | 100% [10/10] |
Heavy oil | 3 | 20% [2/10] | 100% [10/10] |
Motor oil 20w-40 | 4 | 100% [10/10] | 100% [10/10] |
92#gasoline | 5 | 100% [10/10] | 100% [10/10] |
Shell helix 10w-40 | 6 | 70% [7/10] | 100% [10/10] |
Average accuracy | 80% [48/60] | 100% [60/60] |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, R.; Zhao, N.; Zhu, W.; Chen, X.; Zhang, R.; Liu, J.; Liu, W. Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine. Molecules 2020, 25, 5124. https://doi.org/10.3390/molecules25215124
Chen Y, Yang R, Zhao N, Zhu W, Chen X, Zhang R, Liu J, Liu W. Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine. Molecules. 2020; 25(21):5124. https://doi.org/10.3390/molecules25215124
Chicago/Turabian StyleChen, Yunan, Ruifang Yang, Nanjing Zhao, Wei Zhu, Xiaowei Chen, Ruiqi Zhang, Jianguo Liu, and Wenqing Liu. 2020. "Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine" Molecules 25, no. 21: 5124. https://doi.org/10.3390/molecules25215124
APA StyleChen, Y., Yang, R., Zhao, N., Zhu, W., Chen, X., Zhang, R., Liu, J., & Liu, W. (2020). Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine. Molecules, 25(21), 5124. https://doi.org/10.3390/molecules25215124