An Overview of the Role of Adipokines in Cardiometabolic Diseases
Abstract
:1. Introduction
2. Obesity, Metabolic Health, and Cardiovascular Diseases
3. Obesity and Cardiovascular Diseases
4. Adipokines: Function and Mechanism
5. Leptin
6. Adiponectin
7. Resistin
8. Other Adipokines
9. Adipokines, Obesity, and Cardiometabolic Diseases
10. Adipokines, Obesity, and Cardiovascular Diseases
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AdipoR | Adiponectin receptor |
Akt | Protein kinase B |
AMPK | Adenosine monophosphate kinase |
ANGPTL2 | Angiopoietin-related protein 2 |
BMI | Body Mass Index |
CIMT | Carotid intima-media thickness |
CVDs | Cardiovascular diseases |
DM2 | Type 2 diabetes |
eNOS | Endothelial nitric oxide synthase |
ERK | Extracellular signal-regulated kinase |
HDL-C | High-density lipoprotein-cholesterol |
hsCRP | high sensitivity-C-reactive proteins |
ICAM-1 | Intercellular adhesion molecule-1 |
IL | Interleukin |
JAK-STAT3 | Janus kinase (JAK)-signal transducer and activator of transcription (STAT) |
JNK | c-Jun N-terminal kinases |
LEPR | Leptin controls food intake by binding to its receptor |
LVH | Left ventricular hypertrophy |
MAPKs | Mitogen-activated protein kinases |
MCP-1 | Chemotactic protein 1 |
MS | Metabolic syndrome |
NF-kB | Nuclear factor kappa-light-chain-enhancer of activated B-cells |
PI3Ks | Phosphatidylinositol-4,5-bisphosphate 3-kinase () |
PPAR | Peroxisome proliferator-activated receptor |
RBP4 | Retinol-4 transporter protein |
RBP4 | Retinol-binding protein 4 |
Sfrp5 | Secreted frizzled-related protein |
SVF | Stromal vascular fraction |
TGF-β | Transforming growth factor-β |
TNF-α | Tumor necrosis factor-alpha |
t-PA | Tissue-plasminogen activator |
VCAM-1 | Vascular cell-adhesion molecule-1 |
ZAG | Zinc-a2-glycoprotein |
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guan, H.; Fu, Y.; Wang, X.; Bai, L.; Zhao, S.; Liu, E. Effects of SFRP4 overexpression on the production of adipokines in transgenic mice. Adipocyte 2020, 9, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Ahima, R.S.; Flier, J.S. Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. TEM 2000, 11, 327–332. [Google Scholar] [CrossRef]
- Poirier, P.; Martin, J.; Marceau, P.; Biron, S.; Marceau, S. Impact of bariatric surgery on cardiac structure, function and clinical manifestations in morbid obesity. Expert Rev. Cardiovasc. Ther. 2004, 2, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circ. Res. 2006, 113, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Murawska-Cialowicz, E. Adipose tissue—Morphological and biochemical characteristic of different depots. Postepy Hig. Med. Dosw. 2017, 71, 466–484. [Google Scholar] [CrossRef] [PubMed]
- Esler, M.; Straznicky, N.; Eikelis, N.; Masuo, K.; Lambert, G.; Lambert, E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 2006, 48, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Samaras, K.; Botelho, N.K.; Chisholm, D.J.; Lord, R.V. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obes. Res. Clin. Pract. 2010, 18, 884–889. [Google Scholar] [CrossRef]
- Chatterjee, T.K.; Stoll, L.L.; Denning, G.M.; Harrelson, A.; Blomkalns, A.L.; Idelman, G.; Rothenberg, F.G.; Neltner, B.; Romig-Martin, S.A.; Dickson, E.W. Proinflammatory phenotype of perivascular adipocytes: Influence of high-fat feeding. Circ. Res. 2009, 104, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Francisco, V.; Pino, J.; Gonzalez-Gay, M.A.; Mera, A.; Lago, F.; Gómez, R.; Mobasheri, A.; Gualillo, O. Adipokines and inflammation: Is it a question of weight? Br. J. Pharmacol. 2018, 175, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Meiliana, A.; Wijaya, A.; As’ad Armyn, S. The Relationship of Proinflammatory and Antiinflammatory Adipokines in the Development of Metabolic Syndrome in Centrally Obese Men. Indones. Biomed. J. 2010, 2, 118. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Borji, A.; Farkhondeh, T. Evaluation of antidiabetic activity of carnosol (phenolic diterpene in rosemary) in streptozotocin-induced diabetic rats. Cardiovasc Haematol Disord Drug Targets 2017, 17, 11–17. [Google Scholar] [CrossRef]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J. 2017, 69, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose-Response 2017, 15. [Google Scholar] [CrossRef]
- Chhezom, K.; Arslan, M.I.; Hoque, M.M.; Biswas, S.K. Biomarkers of cardiovascular and metabolic diseases in otherwise healthy overweight subjects in Bangladesh. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S381–S384. [Google Scholar] [CrossRef] [PubMed]
- Rijks, J.; Karnebeek, K.; van Dijk, J.-W.; Dorenbos, E.; Gerver, W.-J.; Stouthart, P.; Plat, J.; Vreugdenhil, A. Glycaemic profiles of children with overweight and obesity in free-living conditions in association with cardiometabolic risk. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, A.; Santos, A.; Prado, W. Body composition of obese adolescents: Association between adiposity indicators and cardiometabolic risk factors. J. Hum. Nutr. Diet. 2017, 30, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hirko, K.A.; Kantor, E.D.; Cohen, S.S.; Blot, W.J.; Stampfer, M.J.; Signorello, L.B. Body mass index in young adulthood, obesity trajectory, and premature mortality. Am. J. Epidemiol. 2015, 182, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Bornfeldt, K.E.; Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metabol. 2011, 14, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulut, C.; Helvaci, A.; Adas, M.; Ozsoy, N.; Bayyigit, A. The relationship between left ventricular mass and insulin resistance in obese patients. Indian Heart J. 2016, 68, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, K.R.; Smith-Ryan, A.E.; Blue, M.N.M.; Mock, M.G.; Trexler, E.T.; Ondrak, K.S. Metabolic characterization of overweight and obese adults. Physician Sports Med. 2016, 44, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Al-Sendi, A.M.; Shetty, P.; Musaiger, A.O. Anthropometric and body composition indicators of Bahraini adolescents. Ann. Hum. Biol. 2003, 30, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Pasternak, R.; Greenland, P.; Smith, S., Jr.; Fuster, V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999, 34, 1348–1359. [Google Scholar] [CrossRef] [Green Version]
- Bundhun, P.K.; Wu, Z.J.; Chen, M.-H.J.M. Impact of modifiable cardiovascular risk factors on mortality after percutaneous coronary intervention: A systematic review and meta-analysis of 100 studies. Medicine 2015, 94, e2313. [Google Scholar] [CrossRef]
- Cho, E.; Manson, J.E.; Stampfer, M.J.; Solomon, C.G.; Colditz, G.A.; Speizer, F.E.; Willett, W.C.; Hu, F.B. A prospective study of obesity and risk of coronary heart disease among diabetic women. Diabetes Care 2002, 25, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Wolk, R.; Berger, P.; Lennon, R.J.; Brilakis, E.S.; Somers, V.K. Body mass index: A risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease. Circ. Res. 2003, 108, 2206–2211. [Google Scholar] [CrossRef]
- de Castro Pimentel, A.; Scorsatto, M.; de Oliveira, G.M.M.; Rosa, G.; Luiz, R.R. Characterization of metabolically healthy obese Brazilians and cardiovascular risk prediction. Nutrition 2015, 31, 827–833. [Google Scholar] [CrossRef]
- Pascual, M.; Pascual, D.; Soria, F.; Vicente, T.; Hernandez, A.; Tebar, F.; Valdes, M.J.H. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart 2003, 89, 1152–1156. [Google Scholar] [CrossRef] [Green Version]
- Alpert, M.; Alexander, J.; Chakko, S. Obesity and ventricular function in man: Systolic function. Heart Lung Obes. 1998, 1, 77–94. [Google Scholar]
- Alexander, J.K. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc. Res. Cent. Bull. 1962, 1, 39–44. [Google Scholar]
- Alpert, M.A.; Lambert, C.R.; Panayiotou, H.; Terry, B.E.; Cohen, M.V.; Massey, C.V.; Hashimi, M.W.; Mukerji, V. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am. J. Prev. Cardiol. 1995, 76, 1194–1197. [Google Scholar] [CrossRef]
- Sahasrabuddhe, A.; Pitale, S.; Dhoble, J.; Sagdeo, M. Cardiac diastolic dysfunction and regional body fat distribution in insulin resistant peripubertal obese males. J. Assoc. Physicians India 2016, 64, 20. [Google Scholar]
- Broussard, J.L.; Nelson, M.D.; Kolka, C.M.; Bediako, I.A.; Paszkiewicz, R.L.; Smith, L.; Szczepaniak, E.W.; Stefanovski, D.; Szczepaniak, L.S.; Bergman, R.N. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity. Diabetologia 2016, 59, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGavock, J.M.; Victor, R.G.; Unger, R.H.; Szczepaniak, L.S. Adiposity of the heart*, revisited. Ann. Intern. Med. 2006, 144, 517–524. [Google Scholar] [CrossRef]
- Horwich, T.B.; Fonarow, G.C.; Hamilton, M.A.; MacLellan, W.R.; Woo, M.A.; Tillisch, J.H. The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol. 2001, 38, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Lavie, C.J.; Borer, J.S.; Vallakati, A.; Goel, S.; Lopez-Jimenez, F.; Arbab-Zadeh, A.; Mukherjee, D.; Lazar, J.M. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am. J. Cardiol. 2015, 115, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Joyce, E.; Lala, A.; Stevens, S.R.; Cooper, L.B.; AbouEzzeddine, O.F.; Groarke, J.D.; Grodin, J.L.; Braunwald, E.; Anstrom, K.J.; Redfield, M.M. Prevalence, profile, and prognosis of severe obesity in contemporary hospitalized heart failure trial populations. JACC Heart Fail. 2016, 4, 923–931. [Google Scholar] [CrossRef]
- Wang, T.J.; Parise, H.; Levy, D.; D’Agostino, R.B.; Wolf, P.A.; Vasan, R.S.; Benjamin, E.J. Obesity and the risk of new-onset atrial fibrillation. JAMA 2004, 292, 2471–2477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thanassoulis, G.; Massaro, J.M.; O’Donnell, C.J.; Hoffmann, U.; Levy, D.; Ellinor, P.T.; Wang, T.J.; Schnabel, R.B.; Vasan, R.S.; Fox, C.S. Pericardial fat is associated with prevalent atrial fibrillation: The Framingham Heart Study. Circ. Arrhythmia Electrophysiol. 2010, 3, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pevida, B.; Díaz-Gutiérrez, J.; Miras, A.D.; Silva, C.; Romero, S.; Salvador, J.; Escalada, J.; Frühbeck, G. High body adiposity drives glucose intolerance and increases cardiovascular risk in normoglycemic subjects. Obes. Res. Clin. Pract. 2018, 26, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Clifton, P.M. Relationship between changes in fat and lean depots following weight loss and changes in cardiovascular disease risk markers. J. Am. Heart Assoc. 2018, 7, e008675. [Google Scholar] [CrossRef]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef]
- Kaur, A.; Johnston, D.G.; Godsland, I.F. Does metabolic health in overweight and obesity persist?-Individual variation and cardiovascular mortality over two decades. Eur. J. Endocrinol. 2016, 175, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Voulgari, C.; Tentolouris, N.; Dilaveris, P.; Tousoulis, D.; Katsilambros, N.; Stefanadis, C. Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals. J. Am. Coll. Cardiol. 2011, 58, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpanah, F.; Barzin, M.; Sheikholeslami, F.; Azizi, F. Effect of different obesity phenotypes on cardiovascular events in Tehran Lipid and Glucose Study (TLGS). Am. J. Cardiol. 2011, 107, 412–416. [Google Scholar] [CrossRef]
- Mirzaei, B.; Abdi, H.; Serahati, S.; Barzin, M.; Niroomand, M.; Azizi, F.; Hosseinpanah, F.J.A. Cardiovascular risk in different obesity phenotypes over a decade follow-up: Tehran Lipid and Glucose Study. Atherosclerosis 2017, 258, 65–71. [Google Scholar] [CrossRef]
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C.; Investigators, A.S. Transition from metabolically benign to metabolically unhealthy obesity and 10-year cardiovascular disease incidence: The ATTICA cohort study. Metabolism 2019, 93, 18–24. [Google Scholar] [CrossRef]
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2012, 6, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar] [CrossRef]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharm. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumar, S.; Kant, R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab. Syndr. 2019, 13, 2409–2417. [Google Scholar] [CrossRef]
- Pujanek, M.; Bronisz, A.; Małecki, P.; Junik, R. Pathomechanisms of the development of obesity in some endocrinopathies—An overview. Endokrynol. Pol. 2013, 64, 150–155. [Google Scholar] [PubMed]
- Ntaios, G.; Gatselis, N.K.; Makaritsis, K.; Dalekos, G.N. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 2013, 227, 216–221. [Google Scholar] [CrossRef]
- Jung, C.H.; Kim, M.-S. Molecular mechanisms of central leptin resistance in obesity. Arch. Pharm. Res. 2013, 36, 201–207. [Google Scholar] [CrossRef]
- Vu, J.P.; Larauche, M.; Flores, M.; Luong, L.; Norris, J.; Oh, S.; Liang, L.J.; Waschek, J.; Pisegna, J.R.; Germano, P.M. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP). J. Mol. Neurosci. 2015, 56, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.M. Leptin, leptin receptors, and the control of body weight. Nutr. Rev. 1998, 56, S38–S46. [Google Scholar] [CrossRef]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Lenz, A.; Diamond, F.B., Jr. Obesity: The hormonal milieu. Curr. Opin. Endocrinol. Diabetes Obes. 2008, 15, 9–20. [Google Scholar] [CrossRef]
- Lago, F.; Gómez, R.; Gómez-Reino, J.J.; Dieguez, C.; Gualillo, O. Adipokines as novel modulators of lipid metabolism. Trends Biochem. Sci. 2009, 34, 500–510. [Google Scholar] [CrossRef]
- Bray, G.A.; Clearfield, M.B.; Fintel, D.J.; Nelinson, D.S. Overweight and obesity: The pathogenesis of cardiometabolic risk. Clin. Cornerstone 2009, 9, 30–42. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kadowaki, T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. Suppl. 2008, 32, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Kadowaki, T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013, 17, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Chung, B.H.; Wang, X.; Klein, R.L.; Tang, C.-K.; Garvey, W.T.; Fu, Y.J.A. Enhanced adiponectin actions by overexpression of adiponectin receptor 1 in macrophages. Atherosclerosis 2013, 228, 124–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Leal, V.; Mafra, D. Adipokines in obesity. Clin. Chimica Acta 2013, 419, 87–94. [Google Scholar] [CrossRef]
- Anandaraj, A.A.; Mahin Syed Ismail, P.; Mohammed Namis, S.; Jadallah Bajnaid, Y.; B Shetty, S.; M Almutairi, K. Association of selected Adipocytokines and Inflammatory markers on Body Mass Index in Type 2 Diabetes patients in Saudi Arabia and as risk factors to cardiovascular disease. Curr. Diabetes Rev. 2017, 13, 330–335. [Google Scholar] [CrossRef]
- Tripathi, D.; Kant, S.; Pandey, S.; Ehtesham, N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020, 287, 3141–3149. [Google Scholar] [CrossRef]
- Dasari, R.; Raghunath, V. Obesity and Type II diabetes mellitus: Is resistin the link? J. Diabetes Endocr. Pract. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Singh, A.K.; Tiwari, S.; Gupta, A.; Natu, S.M.; Mittal, B.; Pant, A.B.J.M.S.; Disorders, R. Association of resistin with metabolic syndrome in Indian subjects. Metab. Syndr. Relat. Dis. 2012, 10, 286–291. [Google Scholar] [CrossRef]
- Onuma, H.; Tabara, Y.; Kawamura, R.; Ohashi, J.; Nishida, W.; Takata, Y.; Ochi, M.; Nishimiya, T.; Kawamoto, R.; Kohara, K. Plasma resistin is associated with single nucleotide polymorphisms of a possible resistin receptor, the decorin gene, in the general Japanese population. Diabetes 2013, 62, 649–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, D.R.; Lazar, M.A. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab. 2011, 22, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiotra, P.C.; Boutati, E.; Dimitriadis, G.; Raptis, S.A. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. BioMed Res. Int. 2012, 2013. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Qamar, A.; Murphy, S.A.; Cannon, C.P.; Sabatine, M.S.; Rader, D.J. On-Statin Resistin, Leptin, and Risk of Recurrent Coronary Events After Hospitalization for an Acute Coronary Syndrome (from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Study). Am. J. Cardiol. 2015, 116, 694–698. [Google Scholar] [CrossRef]
- Bik, W.; Ostrowski, J.; Baranowska-Bik, A.; Wolinska-Witort, E.; Bialkowska, M.; Martynska, L.; Baranowska, B. Adipokines and genetic factors in overweight or obese but metabolically healthy Polish women. Neuroendocrinol. Lett. 2010, 31, 497–506. [Google Scholar]
- Telle-Hansen, V.; Halvorsen, B.; Dalen, K.; Narverud, I.; Wesseltoft-Rao, N.; Granlund, L.; Ulven, S.; Holven, K. Altered expression of genes involved in lipid metabolism in obese subjects with unfavourable phenotype. Genes Nutr. 2013, 8, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Jager, J.; Grémeaux, T.; Gonzalez, T.; Bonnafous, S.; Debard, C.; Laville, M.; Vidal, H.; Tran, A.; Gual, P.; Le Marchand-Brustel, Y. Tpl2 Kinase Is Upregulated in Adipose Tissue in Obesity and May Mediate Interleukin-1β and Tumor Necrosis Factor-α Effects on Extracellular Signal–Regulated Kinase Activation and Lipolysis. Diabetes 2010, 59, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Balistreri, C.R.; Caruso, C.; Candore, G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat. Inflamm 2010, 2010, 802078. [Google Scholar] [CrossRef]
- Rull, A.; Camps, J.; Alonso-Villaverde, C.; Joven, J. Insulin resistance, inflammation, and obesity: Role of monocyte chemoattractant protein-1 (orCCL2) in the regulation of metabolism. Mediat. Inflamm 2010, 2010, 326580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.-S.; Chang, C.-C.; Chien, E.Y.; Lin, S.S.; Cheng-Shiuan, T.; Bai, C.-H.; Chao, K.-C. Association between interleukin 1β and interleukin 10 concentrations: A cross-sectional study in young adolescents in Taiwan. BMC Pediatr. 2013, 13, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.K.; Chong, H.C.; Tan, E.H.; Tan, N.S. Getting ‘Smad’ about obesity and diabetes. Nutr. Diabetes 2012, 2, e29. [Google Scholar] [CrossRef] [Green Version]
- Yadav, H.; Quijano, C.; Kamaraju, A.K.; Gavrilova, O.; Malek, R.; Chen, W.; Zerfas, P.; Zhigang, D.; Wright, E.C.; Stuelten, C.; et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011, 14, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naaman, C.E.; Grum-Schwensen, B.; Mansouri, A.; Grigorian, M.; Santoni-Rugiu, E.; Hansen, T.; Kriajevska, M.; Schafer, B.W.; Heizmann, C.W.; Lukanidin, E.; et al. Cancer predisposition in mice deficient for the metastasis-associated Mts1 (S100A4) gene. Oncogene 2004, 23, 3670–3680. [Google Scholar] [CrossRef] [Green Version]
- Arner, P.; Petrus, P.; Esteve, D.; Boulomié, A.; Näslund, E.; Thorell, A.; Gao, H.; Dahlman, I.; Rydén, M. Screening of potential adipokines identifies S100A4 as a marker of pernicious adipose tissue and insulin resistance. Int. J. Obes. 2018, 42, 2047–2056. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Jiao, Y.; Yuan, Q.; Zhai, J.; Tian, T.; Sun, K.; Chen, Z.; Wu, Z.; Zhang, J. S100A4 protects mice from high-fat diet-induced obesity and inflammation. Lab. Investig. 2018, 98, 1025–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeberli, I.; Biebinger, R.; Lehmann, R.; L’Allemand, D.; Spinas, G.A.; Zimmermann, M.B. Serum retinol-binding protein 4 concentration and its ratio to serum retinol are associated with obesity and metabolic syndrome components in children. J. Clin. Endocrinol. Metab. 2007, 92, 4359–4365. [Google Scholar] [CrossRef]
- Pereira, S.S.; Alvarez-Leite, J.I. Adipokines: Biological functions and metabolically healthy obese profile. Recep. Lig. Channel. Res. 2014, 7, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh-Attar, M.J.; Mahdavi-Mazdeh, M.; Yaseri, M.; Zahed, N.S.; Alipoor, E. Comparative assessment of serum adipokines zinc-α2-glycoprotein and adipose triglyceride lipase, and cardiovascular risk factors between normal weight and obese patients with hemodialysis. Arch. Med. Res. 2017, 48, 459–466. [Google Scholar] [CrossRef]
- Tong, S.; Ji, Q.; Du, Y.; Zhu, X.; Zhu, C.; Zhou, Y. Sfrp5/Wnt Pathway: A Protective Regulatory System in Atherosclerotic Cardiovascular Disease. J. Interferon Cytokine Res. 2019, 39, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Y.; Shen, C. Research update on the association between SFRP5, an anti-inflammatory adipokine, with obesity, type 2 diabetes mellitus and coronary heart disease. J. Cell. Mol. Med. 2020, 24, 2730–2735. [Google Scholar] [CrossRef]
- Wysocka, M.B.; Pietraszek-Gremplewicz, K.; Nowak, D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front. Physiol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Zhong, J.-C.; Zhang, Z.-Z.; Wang, W.; McKinnie, S.M.K.; Vederas, J.C.; Oudit, G.Y. Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz Mohamed, I.; Gadeau, A.-P.; Hasan, A.; Abdulrahman, N.; Mraiche, F. Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells 2019, 8, 1558. [Google Scholar] [CrossRef] [Green Version]
- Lok, Z.S.Y.; Lyle, A.N. Osteopontin in Vascular Disease. Arter. Thromb Vasc. Biol. 2019, 39, 613–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streeter, E.A.; Squires, E.C.; Leonard, W.R.; Tarskaia, L.A.; Klimova, T.M.; Fedorova, V.I.; Baltakhinova, M.E.; Krivoshapkin, V.G.; Snodgrass, J.J. Adiponectin, hemoglobin, and cardiovascular risk in an indigenous siberian population. Am. J. Hum. Biol. 2016, 28, 580–583. [Google Scholar] [CrossRef]
- Adamczak, M.; Wiecek, A. The adipose tissue as an endocrine organ. Semin Nephrol. 2013, 33, 2–13. [Google Scholar] [CrossRef]
- Schrover, I.M.; van der Graaf, Y.; Spiering, W.; Visseren, F.L. The relation between body fat distribution, plasma concentrations of adipokines and the metabolic syndrome in patients with clinically manifest vascular disease. Eur. J. Prev. Cardiol. 2018, 25, 1548–1557. [Google Scholar] [CrossRef] [Green Version]
- Goran, M.I.; Gower, B.A. Relation between visceral fat and disease risk in children and adolescents. Am. J. Clin. Nutr. 1999, 70, 149S–156S. [Google Scholar] [CrossRef]
- Weber, D.R.; Katz, L.E.L.; Zemel, B.S.; Gallagher, P.R.; Murphy, K.M.; Dumser, S.M.; Lipman, T.H.J.D.R. Anthropometric measures of abdominal adiposity for the identification of cardiometabolic risk factors in adolescents. Diabetes Res. Clin. Pract. 2014, 103, e14–e17. [Google Scholar] [CrossRef] [Green Version]
- Ortiz Segura, M.d.C.; del Río Navarro, B.E.; Rodriguez Espino, B.A.; Marchat, L.A.; Sanchez Munoz, F.; Villafaña, S.; Hong, E.; Meza-Cuenca, F.; Mailloux Salinas, P.; Bolaños-Jiménez, F. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance. Endocr. Res. 2017, 42, 252–259. [Google Scholar] [CrossRef]
- Hughes, J.; O’Dea, K.; Piera, K.; Barzi, F.; Cass, A.; Hoy, W.; MacIsaac, R.; Maple-Brown, L.J. Associations of serum adiponectin with markers of cardio-metabolic disease risk in Indigenous Australian adults with good health, diabetes and chronic kidney disease. Obes. Res. Clin. Pract. 2016, 10, 659–672. [Google Scholar] [CrossRef]
- Wolk, R.; Bertolet, M.; Singh, P.; Brooks, M.M.; Pratley, R.E.; Frye, R.L.; Mooradian, A.D.; Rutter, M.K.; Calvin, A.D.; Chaitman, B.R. Prognostic value of adipokines in predicting cardiovascular outcome: Explaining the obesity paradox. Mayo Clin. Proc. 2016, 91, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Supriya, R.; Tam, B.T.; Angus, P.Y.; Lee, P.H.; Lai, C.W.; Cheng, K.K.; Yau, S.Y.; Chan, L.W.; Yung, B.Y.; Sheridan, S. Adipokines demonstrate the interacting influence of central obesity with other cardiometabolic risk factors of metabolic syndrome in Hong Kong Chinese adults. PLoS ONE 2018, 13, e0201585. [Google Scholar] [CrossRef]
- Huby, A.-C.; Otvos, L., Jr.; Belin de Chantemèle, E.J. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension 2016, 67, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alissa, E.M.; Alzughaibi, L.S.; Marzouki, Z.M.J.C.; Lipids, P.O. Association between serum resistin, adiposity measures and inflammatory makers in women without cardiovascular diseases. Nutr. Diabetes 2019, 218, 136–140. [Google Scholar] [CrossRef]
- Jamar, G.; Caranti, D.A.; de Cassia Cesar, H.; Masquio, D.C.L.; Bandoni, D.H.; Pisani, L.P. Leptin as a cardiovascular risk marker in metabolically healthy obese: Hyperleptinemia in metabolically healthy obese. Appetite 2017, 108, 477–482. [Google Scholar] [CrossRef]
- Seven, E.; Husemoen, L.L.; Sehested, T.S.; Ibsen, H.; Wachtell, K.; Linneberg, A.; Jeppesen, J.L. Adipocytokines, C-reactive protein, and cardiovascular disease: A population-based prospective study. PLoS ONE 2015, 10, e0128987. [Google Scholar] [CrossRef] [Green Version]
- Salepci, B.; Fidan, A.; Ketenci, S.C.; Parmaksiz, E.T.; Comert, S.S.; Kiral, N.; Akturk, U.A.; Caglayan, B.; Salepci, E. The effect of obstructive sleep apnea syndrome and snoring severity to intima-media thickening of carotid artery. Sleep Breath. Schlaf Atm. 2015, 19, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lester, S.J.; Eleid, M.F.; Khandheria, B.K.; Hurst, R.T. Carotid intima-media thickness and coronary artery calcium score as indications of subclinical atherosclerosis. Mayo Clin. Proc. 2009, 84, 229–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumińska, M.; Majcher, A.; Pyrżak, B.; Czerwonogrodzka-Senczyna, A.; Brzewski, M.; Demkow, U. Cardiovascular risk factors in obese children and adolescents. In Advances in Clinical Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–47. [Google Scholar]
- Stroescu, R.; Teofana-Otilia, B.; Doroş, G.; Marazan, M.; Lesovici, M.; Mãrginean, O. Correlation between adipokines and carotid intima media thickness in a group of obese Romanian children: Is small for gestational age status an independent factor for cardiovascular risk? Arch. Endocrinol. Metab. 2017, 61, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, E.T.; Hardy, R.; Hughes, A.; Wills, A.; Sattar, N.; Deanfield, J.; Kuh, D.; Whincup, P. Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60–64 years: Evidence from the 1946 birth cohort. Int. J. Obes. 2015, 39, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Cano-Martínez, L.J.; Marroquín, C.; Coral-Vázquez, R.M.; Méndez, J.P.; Trejo, S.; Pérez, F.J.C.; Pérez-Razo, J.C.; Canto, P. Expression of adipokines and their receptors in adipose tissue of women with class 3 obesity with or without hypertension. Gene 2019, 702, 148–152. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkhondeh, T.; Llorens, S.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Talebi, M.; Shakibaei, M.; Samarghandian, S. An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules 2020, 25, 5218. https://doi.org/10.3390/molecules25215218
Farkhondeh T, Llorens S, Pourbagher-Shahri AM, Ashrafizadeh M, Talebi M, Shakibaei M, Samarghandian S. An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules. 2020; 25(21):5218. https://doi.org/10.3390/molecules25215218
Chicago/Turabian StyleFarkhondeh, Tahereh, Silvia Llorens, Ali Mohammad Pourbagher-Shahri, Milad Ashrafizadeh, Marjan Talebi, Mehdi Shakibaei, and Saeed Samarghandian. 2020. "An Overview of the Role of Adipokines in Cardiometabolic Diseases" Molecules 25, no. 21: 5218. https://doi.org/10.3390/molecules25215218
APA StyleFarkhondeh, T., Llorens, S., Pourbagher-Shahri, A. M., Ashrafizadeh, M., Talebi, M., Shakibaei, M., & Samarghandian, S. (2020). An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules, 25(21), 5218. https://doi.org/10.3390/molecules25215218