The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative and Quantitative Analysis of Phenolic Compounds of Apple of Heirloom Cultivars
2.1.1. Variation of the Amount of Flavan-3-ols
2.1.2. Variation of the Amount of Flavonols
2.1.3. Variation of the Amount of Chlorogenic Acid
2.1.4. Variation of the Amount of Phloridzin
2.2. Hierarchical Cluster Analysis of Phenolic Compounds of Apple of Heirloom Cultivars
2.3. Principal Component Analysis of Phenolic Compounds of Apple of Heirloom Cultivars
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Solvents
3.3. Preparation of Samples
3.4. Preparation of the Phenolic Compounds
3.5. Qualitative and Quantitative Analysis by HPLC–PDA Method
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Paepe, D.; Valkenborg, D.; Noten, B.; Servaes, K.; Diels, L.; De Loose, M.; Van Droogenbroeck, B.; Voorspoels, S. Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 2014, 11, 739–752. [Google Scholar] [CrossRef]
- Duan, N.; Bai, Y.; Sun, H.; Wang, N.; Thomas, C.; Linyong, M.; Wang, X.; Jiao, C.; LeGall, N.; Mao, L.; et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blažytė, A. National Genetic Resources of Lithuanian Plants: Old Lithuanian Fruit Tree Cultivars, Plant Gene Bank; Ministry of Environment of the Republic of Lithuania: Lithuanian, Vilnius, 2008; pp. 1–27. [Google Scholar]
- Kviklys, D.; Gelvonauskienė, D.; Karklelienė, R.; Juškevičienė, D.; Dambrauskienė, E.; Uselis, N.; Lanauskas, J. Orchards of Heritage: A Catalogue of Cultivars. 2019, pp. 31–83. Available online: https://latlit.eu/wp-content/uploads/2017/06/HG_cultivar-catalog.pdf (accessed on 9 November 2020).
- Liaudanskas, M.; Viskelis, P.; Kviklys, D.; Raudonis, R.; Janulis, V. A Comparative Study of Phenolic Content in Apple Fruits. Int. J. Food Prop. 2015, 18, 945–953. [Google Scholar] [CrossRef]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J.; Gąstoł, M.; Adamska, A.; Krośniak, M.; Zagrodzki, P. Heirloom Versus Modern Apple Cultivars—A Comparison of Juice Composition. Folia Hortic. 2015, 27, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Belviso, S.; Scursatone, B.; Re, G.; Zeppa, G. Novel Data on the Polyphenol Composition of Italian Ancient Apple Cultivars. Int. J. Food Prop. 2013, 16, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Iacopini, P.; Camangi, F.; Stefani, A.; Sebastiani, L. Antiradical potential of ancient Italian apple varieties of Malus×domestica Borkh. in a peroxynitrite-induced oxidative process. J. Food Compos. Anal. 2010, 23, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Liddle, D.M.; Kavanagh, M.E.; Wright, A.J.; Robinson, L.E. Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism. Nutrients 2020, 12, 1386. [Google Scholar] [CrossRef]
- Wu, H.; Luo, T.; Li, Y.M.; Gao, Z.P.; Zhang, K.Q.; Song, J.Y.; Xiao, J.S.; Cao, Y.P. Granny Smith apple procyanidin extract upregulates tight junction protein expression and modulates oxidative stress and inflammation in lipopolysaccharide-induced Caco-2 cells. Food Funct. 2018, 9, 3321–3329. [Google Scholar] [CrossRef]
- Zardo, D.M.; Alberti, A.; Zielinski, A.A.F.; Prestes, A.A.; Esmerino, L.A.; Nogueira, A. Influence of solvents in the extraction of phenolic compounds with antibacterial activity from apple pomace. Sep. Sci. Technol. 2020, 1–9. [Google Scholar] [CrossRef]
- Han, M.; Li, A.; Shen, T.; Meng, J.; Lei, Y.; Zhang, X.; Liu, P.; Gan, L.; Ao, L.; Li, H. Phenolic compounds present in fruit extracts of Malus spp. show antioxidative and pro-apoptotic effects on human gastric cancer cell lines. J. Food Biochem. 2019, 43, e13028. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T.C. Polyphenols: Benefits to the Cardiovascular System in Health and in Aging. Nutrients 2013, 5, 3779–3827. [Google Scholar] [CrossRef]
- Palermo, V.; Mattivi, F.; Silvestri, R.; La Regina, G.; Falcone, C.; Mazzoni, C. Apple Can Act as Anti-Aging on Yeast Cells. Oxidative Med. Cell. Longev. 2012, 2012, 491759. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Chan, H.Y.E.; Huang, Y.; Yu, H.; Chen, Z.-Y. Apple Polyphenols Extend the Mean Lifespan of Drosophila melanogaster. J. Agric. Food Chem. 2011, 59, 2097–2106. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gamsjäger, H. Phytochemical analysis by liquid chromatography of ten old apple varieties grown in Austria and their antioxidative activity. Eur. Food Res. Technol. 2019, 246, 437–448. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Contessa, C.; Botta, R. Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Hortic. Sci. 2016, 43, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Convention on Biological Diversity. Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 10 September 2020).
- Cooper, H.D. The International Treaty on Plant Genetic Resources for Food and Agriculture. Rev. Eur. Community Int. Environ. Law 2002, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Buck, M.; Hamilton, C. The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity. Rev. Eur. Community Int. Environ. Law 2011, 20, 47–61. [Google Scholar] [CrossRef]
- Lončarić, A.; Matanović, K.; Ferrer, P.; Kovač, T.; Šarkanj, B.; Babojelić, M.S.; Lores, M. Peel of Heirloom Apple Varieties as a Great Source of Bioactive Compounds: Extraction by Micro-Matrix Solid-Phase Dispersion. Foods 2020, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobek, L.; Barron, A.R. Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J. Food Compos. Anal. 2016, 45, 9–15. [Google Scholar] [CrossRef]
- Kviklys, D.; Liaudanskas, M.; Viškelis, J.; Buskienė, L.; Lanauskas, J.; Uselis, N.; Janulis, V. Composition and Concentration of Phenolic Compounds of ‘Auksis’ Apple Grown on Various Rootstocks. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Liaudanskas, M.; Viškelis, P.; Jakštas, V.; Raudonis, R.; Kviklys, D.; Milašius, A.; Janulis, V. Application of an Optimized HPLC Method for the Detection of Various Phenolic Compounds in Apples from Lithuanian Cultivars. J. Chem. 2014, 2014, 542121. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Donno, D.; Beccaro, G.L.; Bounous, G. Environmental Sustainability of Heirloom Foods: The Case of Ancient Apple Cultivars in Northern Italy Assessed by Multifunctional LCA. J. Clean. Prod. 2013, 52, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Morresi, C.; Cianfruglia, L.; Armeni, T.; Mancini, F.; Tenore, G.; D’Urso, E.; Micheletti, A.; Ferretti, G.; Bacchetti, T. Polyphenolic compounds and nutraceutical properties of old and new apple cultivars. J. Food Biochem. 2018, 42, e12641. [Google Scholar] [CrossRef]
- Zardo, D.M.; Zielinski, A.A.F.; Alberti, A.; Nogueira, A. Phenolic Compounds and Antioxidant Capacity of Brazilian Apples. Food Nutr. Sci. 2015, 6, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, E.L.; Landi, M.; Massai, R.; Remorini, D.; Conte, G.; Guidi, L. Ancient apple cultivars from Garfagnana (Tuscany, Italy): A potential source for ‘nutrafruit’ production. Food Chem. 2019, 294, 518–525. [Google Scholar] [CrossRef]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Romero, M.P.; Motilva, M.J. Phytochemical Profiles of New Red-Fleshed Apple Varieties Compared with Old and New White-Fleshed Varieties. J. Agric. Food Chem. 2017, 65, 1684–1696. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 2017, 244, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
- Kschonsek, J.; Wiegand, C.; Hipler, U.-C.; Böhm, V. Influence of polyphenolic content on the in vitro allergenicity of old and new apple cultivars: A pilot study. Nutrients 2019, 58, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Łysiak, G.P.; Michalska, A.; Wojdyło, A. Postharvest changes in phenolic compounds and antioxidant capacity of apples cv. Jonagold growing in different locations in Europe. Food Chem. 2020, 310, 125912. [Google Scholar] [CrossRef] [PubMed]
- Raphaelli, C.D.O.; Pereira, E.D.S.; Camargo, T.M.; Vinholes, J.; Rombaldi, C.V.; Vizzotto, M.; Nora, L. Apple Phenolic Extracts Strongly Inhibit α-Glucosidase Activity. Plant Foods Hum. Nutr. 2019, 74, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sinha, K.; Sharma, R.; Purohit, R.; Padwad, Y.S. Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Exp. Cell Res. 2019, 383, 111480. [Google Scholar] [CrossRef]
- Xiang, L.; Sun, K.; Lu, J.; Weng, Y.; Taoka, A.; Sakagami, Y.; Qi, J. Anti-Aging Effects of Phloridzin, an Apple Polyphenol, on Yeastviathe SOD and Sir2 Genes. Biosci. Biotechnol. Biochem. 2011, 75, 854–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuinyla, V.; Lukoševičius, A.; Bandaravičius, A. Lithuanian Pomology. T.1; Apples and Pears Science: Lithuanian, Vilnius, 1990; pp. 1–333. [Google Scholar]
No. | Apple Cultivar | Year of Release, Finding, or Description, and Country | Other Exclusive Characteristics |
---|---|---|---|
1. | ‘Avenarijus’ | 1886, Russia, SC | Skin greenish-yellow, flesh pink, sweet; susceptible to canker |
2. | ‘Baltasis alyvinis’ | 1848, Russia, SC | Skin yellow, flesh white, aromatic; susceptible to scab |
3. | ‘Beržininkų ananasinis’ | 1886, Lithuania, AC | Skin yellow, flesh crispy, aromatic; scab-resistant |
4. | ‘Birutės pepinas’ | 1941, Lithuania, AC | Skin reddish- white, flesh white, with suspicion of wine; susceptible to scab |
5. | ‘Biržuvėnų žieminis’ | Lithuania, WC | Skin yellow, sweet; scab-resistant |
6. | ‘Danų karalienė Luiza’ | 1878, Denmark, WC | Skin covered with rust grid, flesh creamy yellow; scab-resistant |
7. | ‘Geltonasis arkadas’ | XIX, Russia, SC | Skin yellow, sweet, sometimes astringent; susceptible to scab. |
8. | ‘Golden russet’ | 1800-1849, USA, WC | Skin strong russet, flesh creamy yellow; resistant to scab |
9. | ‘Jono pepinas’ | XIX, Lithuania, WC | Flesh firm, yellow; scab-resistant |
10. | ‘Koštelė’ | XIX, Poland, WC | Skin yellow, sweet, flesh firm, creamy; scab-resistant |
11. | ‘Lietuvos pepinas’ | XVIII, Lithuania, WC | Skin yellow, vinous taste, flesh white; susceptible to scab |
12. | ‘Montvilinis’ | 1879, Lithuania, WC | Skin yellow, aromatic; scab-resistant |
13. | ‘Paprastasis antaninis’ | XVIII, Russia, AC | Skin greenish-yellow, acidic, very aromatic; moderately scab-resistant |
14. | ‘Panemunės baltasis’ | 1939, Lithuania, AC | Skin greenish-yellow, flesh white, waxed; scab-resistant |
15. | ‘Pilkasis alyvinis’ | 1653, Russia, SC | Skin white-yellow, flesh white; susceptible to scab |
16. | ‘Popierinis’ | 1852, Lithuania or Latvia, SC | Skin white-yellow, flesh white; susceptible to scab |
17. | ‘Raudonasis alyvinis’ | XVIII, Russia, SC | Skin reddish- white, aromatic, susceptible to scab |
18. | ‘Rudens dryžuotasis’ | 1870, Baltic countries, AC | Skin reddish-white, vinous taste, flesh pinkish; moderately scab-resistant |
19. | ‘Sierinka’ | 1860, Baltic countries, AC | Skin greenish-yellow, fragrant with characteristic aroma, susceptible to canker; moderately scab-resistant |
20. | ‘Tabokinė’ | XIX, Baltic countries, WC | Skin reddish-yellow, bitter-sweet, bitterness weakens by spring; scab-resistant |
21. | ‘Virginijos rožinis’ | 1816, Europe, SC | Skin reddish-white, vinous taste; susceptible to scab |
22. | ‘Žemaičių grietininis’ | XIX, Lithuania, SC | Skin white-yellow, flesh white; moderately scab-resistant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butkevičiūtė, A.; Liaudanskas, M.; Kviklys, D.; Gelvonauskienė, D.; Janulis, V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules 2020, 25, 5263. https://doi.org/10.3390/molecules25225263
Butkevičiūtė A, Liaudanskas M, Kviklys D, Gelvonauskienė D, Janulis V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules. 2020; 25(22):5263. https://doi.org/10.3390/molecules25225263
Chicago/Turabian StyleButkevičiūtė, Aurita, Mindaugas Liaudanskas, Darius Kviklys, Dalia Gelvonauskienė, and Valdimaras Janulis. 2020. "The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars" Molecules 25, no. 22: 5263. https://doi.org/10.3390/molecules25225263
APA StyleButkevičiūtė, A., Liaudanskas, M., Kviklys, D., Gelvonauskienė, D., & Janulis, V. (2020). The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules, 25(22), 5263. https://doi.org/10.3390/molecules25225263