LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Linearity and Precision of the DM + deP Approach for Quantification of the Phosphorylation Degree
2.2. Determination of Casein Peptide Phosphorylation Degrees in Milk with the DM + deP Approach
2.3. Relative Quantitation of Protein Phosphorylation Degree on Ser82 of Hsp27 in HepG2 Cells with and without t-BHP Treatment
2.4. The Change of the Absolute Phosphorylation Degree of Hsp27 in HepG2 Cells Caused by t-BHP Treatment
3. Materials and Methods
3.1. Materials and Chemical Reagents
3.2. Cell Culture and t-BHP Treatment of HepG2 Cells
3.3. Trypsin Digestion of the Proteins Extracted from HepG2 Cells and Milk
3.4. Sample Preparation for the Relative Quantification of Phosphopeptides in the Cytosolic Proteins of HepG2 Cells with and without t-BHP Treatment
3.5. MS Analysis for the Relative Quantification of Phosphopeptides in the Cytosolic Proteins of HepG2 Cells with and without t-BHP Treatment
3.6. Absolute Quantitation of Site-Specific Phosphorylation Stoichiometry Using the DM + deP Approach
3.7. AQUA Determination of Phosphorylation Degrees of pVR-14 Derived from α-S1-Casein in Milk Using SRM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graves, J.D.; Krebs, G. Protein phosphorylation and signal transduction. Pharmacol. Ther. 1999, 82, 111–121. [Google Scholar] [CrossRef]
- Hunter, T. Tyrosine phosphorylation: Thirty years and counting. Curr. Opin. Cell Biol. 2009, 21, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 2004, 10, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Lemeer, S.; Heck, A.J.R. The phosphoproteomics data explosion. Curr. Opin. Chem. Biol. 2009, 13, 414–420. [Google Scholar] [CrossRef]
- Dunn, J.D.; Reid, G.E.; Bruening, M.L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 2010, 29, 29–54. [Google Scholar] [CrossRef]
- Beltran, L.; Cutillas, P.R. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids. 2012, 43, 1009–1024. [Google Scholar] [CrossRef]
- Fíla, J.; Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2012, 43, 1025–1047. [Google Scholar] [CrossRef] [Green Version]
- Leitner, A.; Sturm, M.; Lindner, W. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: A review. Anal. Chim. Acta. 2011, 73, 19–30. [Google Scholar] [CrossRef]
- Zoumaro-Djayoon, A.D.; Ding, V.; Foong, L.Y.; Choo, A.; Heck, A.J.R.; Muñoz, J. Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling. Proteomics 2011, 11, 3962–3971. [Google Scholar] [CrossRef]
- Boersema, P.J.; Foong, L.Y.; Ding, V.M.Y.; Lemeer, S.; van Breukelen, B.; Philp, R.; Boekhorst, J.; Snel, B.; den Hertog, J.; Choo, A.B.H.; et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol. Cell Proteom. 2010, 9, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.Y.; Tsai, M.L.; Wu, C.J.; Hsu, J.L.; Ho, S.H.; Chen, S.H. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 2006, 6, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, M.; Yoshihara, H.; Masuda, T.; Tsukahara, M.; Sugiyama, N.; Ishihama, Y. Phosphoproteome analysis of formalin-fixed and paraffin-embedded tissue sections mounted on microscope slides. J. Proteome Res. 2014, 13, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Scholten, A.; Preisinger, C.; Corradini, E.; Bourgonje, V.J.; Hennrich, H.L.; van Veen, T.A.; Swaminathan, P.D.; Joiner, M.-L.; Vos, M.A.; Anderson, M.E.; et al. Phosphoproteomics study based on in vivo inhibition reveals sites of calmodulin-dependent protein kinase II regulation in the heart. J. Am. Heart Assoc. 2013, 2, e000318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Jin, Q.K.; Carr, S.A.; Annan, R.S. N-Terminal peptide labeling strategy for incorporation of isotopic tags: A method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom. 2002, 16, 2325–2332. [Google Scholar] [CrossRef]
- Hegeman, A.D.; Harms, A.C.; Sussman, M.R.; Bunner, A.E.; Harper, J.F. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom. 2004, 15, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Previs, M.J.; VanBuren, P.; Begin, K.J.; Vigoreaux, J.O.; LeWinter, M.M.; Matthews, D.E. Quantification of protein phosphorylation by liquid chromatography-mass spectrometry. Anal. Chem. 2008, 80, 5864–5872. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, A.; Chernushevich, I.; Ens, W.; Standing, K.G.; Thomson, B.; Wilm, M.; Mann, M. Rapid de novo peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 1997, 11, 1015–1024. [Google Scholar] [CrossRef]
- Julka, S.; Regnier, F. Quantification in proteomics through stable isotope coding: A review. J. Proteome Res. 2004, 3, 350–363. [Google Scholar] [CrossRef]
- Baker, M.R.; Li, Q.X. Guanidination of tryptic peptides without desalting for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis. Anal. Chem. 2013, 85, 8873–8880. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.L.; Huang, S.Y.; Chow, N.H.; Chen, S.H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75, 6843–6852. [Google Scholar] [CrossRef]
- Gerber, S.A.; Rush, J.; Stemman, O.; Kirschner, M.W.; Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Nat. Acad. Sci. USA. 2003, 100, 6940–6945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrigo, A.P. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperon. 2017, 22, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostenko, S.; Moens, U. Heat shock protein 27 phosphorylation: Kinases, phosphatases, functions and pathology. Cell Mol. Life Sci. 2009, 66, 3289–3307. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Chen, S.H. Stable isotope dimethyl labeling for quantitative proteomics and beyond. Philos. Trans. R. Soc. A. 2016, 374, 20150364. [Google Scholar] [CrossRef]
- Bandura, D.R.; Baranov, V.I.; Tanner, S.D. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem. 2002, 74, 1497–1502. [Google Scholar] [CrossRef]
- Wind, M.; Wesch, H.; Lehmann, W.D. Protein phosphorylation degree: Determination by capillary liquid chromatography and inductively coupled plasma mass spectrometry. Anal. Chem. 2001, 73, 3006–3010. [Google Scholar] [CrossRef]
- Larsen, M.R.; Thingholm, T.E.; Jensen, O.N.; Roepstorff, P.; Jørgensen, T.J.D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteom. 2005, 4, 873–886. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.L.; Kim, J.; Hancock, W.S.; Karger, B. Extended range proteomic analysis (ERPA): A new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). J. Proteome Res. 2005, 4, 1155–1170. [Google Scholar] [CrossRef]
- Fang, Z.H.; Visker, M.H.P.W.; Miranda, G.; Delacroix-Buchet, A.; Bovenhuis, H.; Martin, P. The relationships among bovine αS-casein phosphorylation isoforms suggest different phosphorylation pathways. J. Dairy Sci. 2016, 99, 8168–8177. [Google Scholar] [CrossRef]
- Imanishi, S.Y.; Kochin, V.; Ferraris, S.E.; de Thonel, A.; Pallari, H.M.; Corthals, G.L.; Eriksson, J.E. Reference-facilitated phosphoproteomics: Fast and reliable phosphopeptide validation by micro LC-ESI-Q-TOF MS/MS, Mol. Cell. Proteomics 2007, 6, 1380–1391. [Google Scholar] [CrossRef] [Green Version]
- Gaitanaki, C.; Konstantina, S.; Chrysa, S.; Beis, I. Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J. Exp. Biol. 2003, 206, 2759–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, T.; Urushido, M.; Ide, H.; Ishihara, M.; Hamada-Ode, K.; Shimamura, Y.; Ogata, K.; Inoue, K.; Taniguchi, Y.; Taguchi, T.; et al. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS ONE. 2015, 10, e0126229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.H.; Chen, C.R.; Chen, S.H.; Li, D.T.; Hsu, J.L. Improved Nα-acetylated peptide enrichment following dimethyl labeling and SCX. J. Proteome Res. 2013, 12, 3277–3287. [Google Scholar] [CrossRef] [PubMed]
Phosphorylation Degree (Theoretical) | Peak Area of D-Labeled Peptide | Peak Area of H-Labeled Peptide | Phosphorylation Degree (Experimental) |
---|---|---|---|
20% | 37,032,008.5 ± 636,513 | 29,692,292.5 ± 600,737.4 | 19.82% ± 0.24% |
33% | 38,687,784.7 ± 3,803,881 | 27,327,569.7 ± 2,324,513 | 30.43% ± 3.75% |
50% | 44,018,746.7 ± 3,048,465 | 21,809,096 ± 1,057,211 | 50.38% ± 2.30% |
66% | 46,485,426.7 ± 4,333,081 | 16,914,208 ± 1,738,936 | 63.63% ± 0.57% |
80% | 53,027,741.7 ± 5,388,413 | 11,023,266.7 ± 318,858.1 | 79.07% ± 2.19% |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-H.; Lin, Y.-C.; Shih, M.-K.; Wang, L.-F.; Liu, S.-S.; Hsu, J.-L. LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation. Molecules 2020, 25, 5316. https://doi.org/10.3390/molecules25225316
Chen S-H, Lin Y-C, Shih M-K, Wang L-F, Liu S-S, Hsu J-L. LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation. Molecules. 2020; 25(22):5316. https://doi.org/10.3390/molecules25225316
Chicago/Turabian StyleChen, Sin-Hong, Ya-Chi Lin, Ming-Kuei Shih, Li-Fei Wang, Shyh-Shyan Liu, and Jue-Liang Hsu. 2020. "LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation" Molecules 25, no. 22: 5316. https://doi.org/10.3390/molecules25225316
APA StyleChen, S. -H., Lin, Y. -C., Shih, M. -K., Wang, L. -F., Liu, S. -S., & Hsu, J. -L. (2020). LC-MS Quantification of Site-Specific Phosphorylation Degree by Stable-Isotope Dimethyl Labeling Coupled with Phosphatase Dephosphorylation. Molecules, 25(22), 5316. https://doi.org/10.3390/molecules25225316