Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Literature Results: scCO2 Foaming Processes in Organic Polymers: Parameters Influencing Foaming, Batch vs. Continuous
2.1.1. Chemical Parameters
2.1.2. Physico-Chemical Parameters
2.1.3. Technological/Process Parameters
2.2. New Examples Based on Amorphous Polymer (PMMA) Batch Foaming: PMMA Blends with Core–Shell Performed Particles (CS) or a Structured Acrylic Block Copolymer (MAM), as CO2-Philic Foaming-Aid Additives
2.2.1. Comparison of CoreShell and MAM Tri Block Copolymer
2.2.2. Role of a Quasi One-Step Batch Foaming
3. Experimental Section
3.1. Materials and Unfoamed Precursors Production
3.2. Porous Samples Production
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted by Supercritical Carbon Dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Dumon, M.; Rodriguez-Perez, M.A.; Garcia, R.; Dietz, C. Block Copolymers Self-Assembly Allows Obtaining Tunable Micro or Nanoporous Membranes or Depth Filters Based on PMMA; Fabrication Method and Nanostructures. J. Phys. Chem. C 2014, 118, 4656–4663. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.S.; Lee, R.E.; Wang, J.; Jung, P.U.; Park, C.B. Study of the Foaming Mechanisms Associated with Gas Counter Pressure and Mold Opening Using the Pressure Profiles. Chem. Eng. Sci. 2017, 167, 105–119. [Google Scholar] [CrossRef]
- Zhang, R.; Yokoyama, H. Fabrication of Nanoporous Structures in Block Copolymer Using Selective Solvent Assisted with Compressed Carbon Dioxide. Macromolecules 2009, 42, 3559–3564. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, B.; Lee, L.J. Extrusion Foaming of Polystyrene/Carbon Particles Using Carbon Dioxide and Water as Co-Blowing Agents. Polymer 2011, 52, 1847–1855. [Google Scholar] [CrossRef]
- Krause, B.; Sijbesma, H.J.P.; Münüklü, P.; van der Vegt, N.F.A.; Wessling, M. Bicontinuous Nanoporous Polymers by Carbon Dioxide Foaming. Macromolecules 2001, 34, 8792–8801. [Google Scholar] [CrossRef]
- Krause, B.; Diekmann, K.; van der Vegt, N.F.A.; Wessling, M. Open Nanoporous Morphologies from Polymeric Blends by Carbon Dioxide Foaming. Macromolecules 2002, 35, 1738–1745. [Google Scholar] [CrossRef]
- Miller, D.; Chatchaisucha, P.; Kumar, V. Microcellular and Nanocellular Solid-State Polyetherimide (PEI) Foams Using Sub-Critical Carbon Dioxide I. Processing and Structure. Polymer 2009, 50, 5576–5584. [Google Scholar] [CrossRef]
- Reglero, J.A.; Viot, P.; Dumon, M. Foaming of Amorphous Polymers and Blends in Supercritical CO2: Solubility versus Block Copolymers Addition. J. Cell. Plast. 2011, 47, 535–548. [Google Scholar] [CrossRef]
- Dumon, M.; Ruiz, J.A.R.; Sanz, J.P.; Perez, M.A.R.; Tallon, J.-M.; Pedros, M.; Cloutet, E.; Viot, P. Block Copolymer-Assisted Microcellular Supercritical CO2 Foaming of Polymers and Blends. Cell. Polym. 2012, 31, 207–222. [Google Scholar] [CrossRef]
- Reglero Ruiz, J.A.; Saiz-Arroyo, C.; Dumon, M.; Rodríguez-Perez, M.A.; Gonzalez, L. Production, Cellular Structure and Thermal Conductivity of Microcellular (Methyl Methacrylate)-(Butyl Acrylate)-(Methyl Methacrylate) Triblock Copolymers: Microcellular MAM Triblock Copolymers. Polym. Int. 2011, 60, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.A.R.; Marc-Tallon, J.; Pedros, M.; Dumon, M. Two-Step Micro Cellular Foaming of Amorphous Polymers in Supercritical CO2. J. Supercrit. Fluids 2011, 57, 87–94. [Google Scholar] [CrossRef]
- Yokoyama, B.H.; Li, L.; Nemoto, T.; Sugiyama, K. Tunable Nanocellular Polymeric Monoliths Using Fluorinated Block Copolymer Templates and Supercritical Carbon Dioxide. Adv. Mater. 2004, 16, 1542–1546. [Google Scholar] [CrossRef]
- Costeux, S.; Zhu, L. Low Density Thermoplastic Nanofoams Nucleated by Nanoparticles. Polymer 2013, 54, 2785–2795. [Google Scholar] [CrossRef]
- Chidambareswarapattar, C.; McCarver, P.M.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N. Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chem. Mater. 2013, 25, 3205–3224. [Google Scholar] [CrossRef]
- Costeux, S. CO2 -Blown Nanocellular Foams. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Liu, S.; Duvigneau, J.; Vancso, G.J. Nanocellular Polymer Foams as Promising High Performance Thermal Insulation Materials. Eur. Polym. J. 2015, 65, 33–45. [Google Scholar] [CrossRef]
- Antunes, M.; Velasco, J.I. Multifunctional Polymer Foams with Carbon Nanoparticles. Prog. Polym. Sci. 2014, 39, 486–509. [Google Scholar] [CrossRef]
- Gedler, G.; Antunes, M.; Velasco, J.I. Enhanced Electrical Conductivity in Graphene-Filled Polycarbonate Nanocomposites by Microcellular Foaming with Sc-CO2. J. Adhes. Sci. Technol. 2016, 30, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.A.R.; Pedros, M.; Tallon, J.-M.; Dumon, M. Micro and Nano Cellular Amorphous Polymers (PMMA, PS) in Supercritical CO2 Assisted by Nanostructured CO2-Philic Block Copolymers—One Step Foaming Process. J. Supercrit. Fluids 2011, 58, 168–176. [Google Scholar] [CrossRef]
- Li, L.; Yokoyama, H.; Nemoto, T.; Sugiyama, K. Facile Fabrication of Nanocellular Block Copolymer Thin Films Using Supercritical Carbon Dioxide. Adv. Mater. 2004, 16, 1226–1229. [Google Scholar] [CrossRef]
- Guo, H.; Nicolae, A.; Kumar, V. Solid-State Poly(Methyl Methacrylate) (PMMA) Nanofoams. Part II: Low-Temperature Solid-State Process Space Using CO2 and the Resulting Morphologies. Polymer 2015, 70, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, V.; Martín-de León, J.; Rodríguez-Pérez, M.A. Production and Characterization of Nanocellular Polyphenylsulfone Foams. Mater. Lett. 2016, 178, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Costeux, S.; Zhu, L.; Weikart, C.M.; Kalantar, T.H. Nanoporous Polymeric Foam Having High Porosity. U.S. Patent No 9,718,939 B2, 1 August 2017. [Google Scholar]
- Khazova, E.; Hahn, K.; Sandler, M.-K.; Sommer, J.K.W.; Hingman, R. Method for Producing Nanoporous Polymer Foam Materials. European Patent EP2782956 A1, 30 May 2013. [Google Scholar]
- Okolieocha, C.; Raps, D.; Subramaniam, K.; Altstädt, V. Microcellular to Nanocellular Polymer Foams: Progress (2004–2015) and Future Directions—A Review. Eur. Polym. J. 2015, 73, 500–519. [Google Scholar] [CrossRef]
- Sandler, J.K.W.; Francis, T.; Lopes, P.M.S. Nanoporous Polymer Foams. U.S. Patent No US 2011/0287260 A1, 10 September 2013. [Google Scholar]
- Costeux, S.; Foether, D. Continuous Extrusion of Nanocellular Foams. In Proceedings of the Annual Technical Conference-ANTEC, Orlando, FL, USA, 23–25 March 2015; pp. 2740–2745. [Google Scholar]
- Pinto, J.; Dumon, M.; Rodriguez-Perez, M.A. Nanoporous Polymer Foams from Nanostructured Polymer Blends. In Recent Developments in Polymer Macro, Micro and Nano Blends; Elsevier: Amsterdam, The Netherlands, 2017; pp. 237–288. [Google Scholar]
- Xu, X.; Cristancho, D.E.; Costeux, S.; Wang, Z.-G. Bubble Nucleation in Polymer–CO2 Mixtures. Soft Matter 2013, 9, 9675. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Reglero-Ruiz, J.A.; Dumon, M.; Rodriguez-Perez, M.A. Temperature Influence and CO2 Transport in Foaming Processes of Poly(Methyl Methacrylate)–Block Copolymer Nanocellular and Microcellular Foams. J. Supercrit. Fluids 2014, 94, 198–205. [Google Scholar] [CrossRef]
- Inceoglu, S.; Young, N.P.; Jackson, A.J.; Kline, S.R.; Costeux, S.; Balsara, N.P. Effect of Supercritical Carbon Dioxide on the Thermodynamics of Model Blends of Styrene-Acrylonitrile Copolymer and Poly(Methyl Methacrylate) Studied by Small-Angle Neutron Scattering. Macromolecules 2013, 46, 6345–6356. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Suh, N.P.; Baldwin, D.F. Method for Providing Continuous Processing of Microcellular and Supermicrocellular Foamed Materials. U.S. Patent No 5866053, 2 February 1999. [Google Scholar]
- Thiagarajan, C.; Sriraman, R.; Chaudhar, T.D. Nano Cellular Polymer Foam and Methods for Making Them. U.S. Patent No 7,838,108 B2, 23 November 2010. [Google Scholar]
- Gómez-Monterde, J.; Hain, J.; Sánchez-Soto, M.; Maspoch, M.L. Microcellular Injection Moulding: A Comparison between MuCell Process and the Novel Micro-Foaming Technology IQ Foam. J. Mater. Process. Technol. 2019, 268, 162–170. [Google Scholar] [CrossRef]
- Wang, L.; Wakatsuki, Y.; Hikima, Y.; Ohshima, M.; Yusa, A.; Uezono, H.; Naitou, A. Preparation of Microcellular Injection-Molded Foams Using Different Types of Low-Pressure Gases via a New Foam Injection Molding Technology. Ind. Eng. Chem. Res. 2019, 58, 17824–17832. [Google Scholar] [CrossRef]
- Joseph, S.; Kumanan, A.; Kavin, T.; Mathanakamarajan, J.; Murukesan, V. Microcellular Foam Light Weight Plastic Molding Technology. In Proceedings of the FISITA World Automotive Congress, Chennai, India, 2–5 October 2018. [Google Scholar]
- Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. Polymer Nano-Foams for Insulating Applications Prepared from CO2 Foaming. Prog. Polym. Sci. 2015, 41, 122–145. [Google Scholar] [CrossRef]
- Notario, B.; Pinto, J.; Rodriguez-Perez, M.A. Nanoporous Polymeric Materials: A New Class of Materials with Enhanced Properties. Prog. Mater. Sci. 2016, 78–79, 93–139. [Google Scholar] [CrossRef] [Green Version]
- Notario, B.; Pinto, J.; Solorzano, E.; de Saja, J.A.; Dumon, M.; Rodríguez-Pérez, M.A. Experimental Validation of the Knudsen Effect in Nanocellular Polymeric Foams. Polymer 2015, 56, 57–67. [Google Scholar] [CrossRef]
- Pérez-Tamarit, S.; Notario, B.; Solórzano, E.; Rodriguez-Perez, M.A. Light Transmission in Nanocellular Polymers: Are Semi-Transparent Cellular Polymers Possible? Mater. Lett. 2018, 210, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Martín-de León, J.; Bernardo, V.; Rodríguez-Pérez, M.Á. Key Production Parameters to Obtain Transparent Nanocellular PMMA. Macromol. Mater. Eng. 2017, 302, 1700343. [Google Scholar] [CrossRef]
- Martín-de León, J.; Pura, J.L.; Bernardo, V.; Rodríguez-Pérez, M.Á. Transparent Nanocellular PMMA: Characterization and Modeling of the Optical Properties. Polymer 2019, 170, 16–23. [Google Scholar] [CrossRef]
- Bernardo, V.; Martin-de Leon, J.; Pinto, J.; Schade, U.; Rodriguez-Perez, M.A. On the Interaction of Infrared Radiation and Nanocellular Polymers: First Experimental Determination of the Extinction Coefficient. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124937. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Mark, L.H.; Wang, G.; Yu, K.; Wang, C.; Park, C.B.; Zhao, G. Ultra-Tough and Super Thermal-Insulation Nanocellular PMMA/TPU. Chem. Eng. J. 2017, 325, 632–646. [Google Scholar] [CrossRef]
- Forest, C.; Chaumont, P.; Cassagnau, P.; Swoboda, B.; Sonntag, P. CO2 Nano-Foaming of Nanostructured PMMA. Polymer 2015, 58, 76–87. [Google Scholar] [CrossRef]
- Lalande, L.; Plummer, C.J.G.; Månson, J.-A.E.; Gérard, P. The Influence of Matrix Modification on Fracture Mechanisms in Rubber Toughened Polymethylmethacrylate. Polymer 2006, 47, 2389–2401. [Google Scholar] [CrossRef]
- Lalande, L.; Plummer, C.J.G.; Månson, J.-A.E.; Gérard, P. Microdeformation Mechanisms in Rubber Toughened PMMA and PMMA-Based Copolymers. Eng. Fract. Mech. 2006, 73, 2413–2426. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Li, H.; Liu, D.; Han, X.; Wingert, M.J.; Lee, L.J.; Koelling, K.W. A Review of CO2 Applications in the Processing of Polymers. Ind. Eng. Chem. Res. 2003, 42, 6431–6456. [Google Scholar] [CrossRef]
- Vitoux, P.; Tassaing, T.; Cansell, F.; Marre, S.; Aymonier, C. In Situ IR Spectroscopy and Ab Initio Calculations To Study Polymer Swelling by Supercritical CO2. J. Phys. Chem. B 2009, 113, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.K.; Lundy, G.D.; Palamara, J.E.; Duda, J.L.; Danner, R.P. New Pressure-Decay Techniques to Study Gas Sorption and Diffusion in Polymers at Elevated Pressures. Ind. Eng. Chem. Res. 2004, 43, 1537–1542. [Google Scholar] [CrossRef]
- Shieh, Y.-T.; Sawan, S.P.; Span, W.D. Interaction of Supercritical Carbon Dioxide with Polymers. 1. Crystalline Polymers. J. Appl. Polym. Sci. 1996, 59, 567–758. [Google Scholar] [CrossRef]
- Sato, Y.; Fujiwara, K.; Takikawa, T.; Takishima, S.; Masuoka, H. Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene, and Polystyrene under High Pressures and Temperatures. Fluid Phase Equilibria 1999, 162, 261–276. [Google Scholar] [CrossRef]
- Guadagno, T.; Kazarian, S.G. High-Pressure CO2-Expanded Solvents: Simultaneous Measurement of CO2 Sorption and Swelling of Liquid Polymers with in-Situ Near-IR Spectroscopy. J. Phys. Chem. B 2004, 108, 13995–13999. [Google Scholar] [CrossRef]
- Pasquali, I.; Andanson, J.-M.; Kazarian, S.G.; Bettini, R. Measurement of CO2 Sorption and PEG 1500 Swelling by ATR-IR Spectroscopy. J. Supercrit. Fluids 2008, 45, 384–390. [Google Scholar] [CrossRef]
- Vitoux, P.; Majimel, M.; Tassaing, T.; Letourneau, J.J.; Cansell, F.; Aymonier, C. Application of Polymer Swelling by ScCO2 to the Synthesis of Polymer/Metal Nanocomposites. SSP 2009, 151, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Hrnčič, M.K.; Markočič, E.; Trupej, N.; Škerget, M.; Knez, Ž. Investigation of Thermodynamic Properties of the Binary System Polyethylene Glycol/CO2 Using New Methods. J. Supercrit. Fluids 2014, 87, 50–58. [Google Scholar] [CrossRef]
- Kiran, E. Supercritical Fluids and Polymers—The Year in Review—2014. J. Supercrit. Fluids 2016, 110, 126–153. [Google Scholar] [CrossRef]
- Etxeberria, A.; Guezala, S.; Iruin, J.J.; De La Campa, J.G.; De Abajo, J. Blends of Poly(Ether Imide) and an Aromatic Poly(Ether Amide): Phase Behavior and CO2 Transport Properties. J. Appl. Polym. Sci. 1997, 68, 2141–2149. [Google Scholar] [CrossRef]
- Chang, S.-H.; Park, S.-C.; Shim, J.-J. Phase Equilibria of Supercritical Fluid–Polymer Systems. J. Supercrit. Fluids 1998, 13, 113–119. [Google Scholar] [CrossRef]
- Hu, D.; Chen, J.; Sun, S.; Liu, T.; Zhao, L. Solubility and Diffusivity of CO2 in Isotactic Polypropylene/Nanomontmorillonite Composites in Melt and Solid States. Ind. Eng. Chem. Res. 2014, 53, 2673–2683. [Google Scholar] [CrossRef]
- Ricci, E.; Vergadou, N.; Vogiatzis, G.G.; De Angelis, M.G.; Theodorou, D.N. Molecular Simulations and Mechanistic Analysis of the Effect of CO2 Sorption on Thermodynamics, Structure, and Local Dynamics of Molten Atactic Polystyrene. Macromolecules 2020, 53, 3669–3689. [Google Scholar] [CrossRef]
- Common, A. Développement d’un Procédé Propre Assisté par CO2 Supercritique Pour la Production de Particules de Polyamide: Caractérisation et Faisabilité. Génie des Procédés et de L’environnement; Université de Toulouse: Toulouse, France, 2011. [Google Scholar]
- Sato, Y.; Takikawa, T.; Sorakubo, A.; Takishima, S.; Masuoka, H.; Imaizumi, M. Solubility and Diffusion Coefficient of Carbon Dioxide in Biodegradable Polymers. Ind. Eng. Chem. Res. 2000, 39, 4813–4819. [Google Scholar] [CrossRef]
- Berens, A.R.; Huvard, G.S. Interaction of Polymers with Near-Critical Carbon Dioxide. In Supercritical Fluid Science and Technology; Johnston, K.P., Penninger, J.M.L., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1989; Volume 406, pp. 207–223. [Google Scholar]
- Kazarian, S.G.; Vincent, M.F.; Bright, F.V.; Liotta, C.L.; Eckert, C.A. Specific Intermolecular Interaction of Carbon Dioxide with Polymers. J. Am. Chem. Soc. 1996, 118, 1729–1736. [Google Scholar] [CrossRef]
- von Schnitzler, J.; Eggers, R. Mass Transfer in Polymers in a Supercritical CO2-Atmosphere. J. Supercrit. Fluids 1999, 16, 81–92. [Google Scholar] [CrossRef]
- Champeau, M.; Thomassin, J.-M.; Jérôme, C.; Tassaing, T. In Situ FTIR Micro-Spectroscopy to Investigate Polymeric Fibers under Supercritical Carbon Dioxide: CO2 Sorption and Swelling Measurements. J. Supercrit. Fluids 2014, 90, 44–52. [Google Scholar] [CrossRef]
- Webb, K.F.; Teja, A.S. Solubility and Diffusion of Carbon Dioxide in Polymers. Fluid Phase Equilibria 1999, 158–160, 1029–1034. [Google Scholar] [CrossRef]
- Ushiki, I.; Hayashi, S.; Kihara, S.; Takishima, S. Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Poly(Methyl Methacrylate) at High Temperatures and Pressures. J. Supercrit. Fluids 2019, 152, 104565. [Google Scholar] [CrossRef]
- Eslami, H.; Kesik, M.; Karimi-Varzaneh, H.A.; Müller-Plathe, F. Sorption and Diffusion of Carbon Dioxide and Nitrogen in Poly(Methyl Methacrylate). J. Chem. Phys. 2013, 139, 124902. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.K.; Beckman, E.J. Modelling the Swelling of Crosslinked Elastomers by Supercritical Fluids. Polymer 1992, 33, 5032–5039. [Google Scholar] [CrossRef]
- Muth, O.; Hirth, T.; Vogel, H. Investigation of Sorption and Diffusion of Supercritical Carbon Dioxide into Poly(Vinyl Chloride). J. Supercrit. Fluids 2001, 19, 299–306. [Google Scholar] [CrossRef]
- Lachet, V.; Teuler, J.-M.; Rousseau, B. Classical Force Field for Hydrofluorocarbon Molecular Simulations. Application to the Study of Gas Solubility in Poly(Vinylidene Fluoride). J. Phys. Chem. A 2015, 119, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yavari, M.; Baldanza, A.; Di Maio, E.; Okamoto, Y.; Lin, H.; Galizia, M. Volumetric Properties and Sorption Behavior of Perfluoropolymers with Dioxolane Pendant Rings. Ind. Eng. Chem. Res. 2020, 59, 5276–5286. [Google Scholar] [CrossRef]
- Ruiz, J.A.R.; Cloutet, E.; Dumon, M. Investigation of the Nanocellular Foaming of Polystyrene in Supercritical CO2 by Adding a CO2-Philic Perfluorinated Block Copolymer. J. Appl. Polym. Sci. 2012, 126, 38–45. [Google Scholar] [CrossRef]
- André, P.; Lacroix-Desmazes, P.; Taylor, D.K.; Boutevin, B. Solubility of Fluorinated Homopolymer and Block Copolymer in Compressed CO2. J. Supercrit. Fluids 2006, 37, 263–270. [Google Scholar] [CrossRef]
- Girard, E.; Tassaing, T.; Marty, J.-D.; Destarac, M. Structure–Property Relationships in CO2-Philic (Co)Polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions. Chem. Rev. 2016, 116, 4125–4169. [Google Scholar] [CrossRef]
- Cooper, A.I. Polymer Synthesis and Processing Using Supercritical Carbon Dioxide. J. Mater. Chem. 2000, 10, 207–234. [Google Scholar] [CrossRef]
- Li, L.; Nemoto, T.; Sugiyama, K.; Yokoyama, H. CO2 Foaming in Thin Films of Block Copolymer Containing Fluorinated Blocks. Macromolecules 2006, 39, 4746–4755. [Google Scholar] [CrossRef]
- Bernardo, V.; Martin-de Leon, J.; Laguna-Gutierrez, E.; Catelani, T.; Pinto, J.; Athanassiou, A.; Rodriguez-Perez, M.A. Understanding the Role of MAM Molecular Weight in the Production of PMMA/MAM Nanocellular Polymers. Polymer 2018, 153, 262–270. [Google Scholar] [CrossRef]
- Grande, S.; Le Droumaguet, B. Design of Functional Nanoporous Polymeric Materials from Self Organized Block Copolymers. Nanotechnol. Res. J. 2016, 9, 389–409. [Google Scholar]
- Siripurapu, S.; Gay, Y.J.; Royer, J.R.; DeSimone, J.M.; Spontak, J.; Khan, S.A. Generation of Microcellular Foams of PVDF and Its Blends Using Supercritical Carbon Dioxide in a Continuous Process. Polymer 2002, 43, 5511–5520. [Google Scholar] [CrossRef]
- Qiang, W.; Zhao, L.; Gao, X.; Liu, T.; Liu, Z.; Yuan, W.-K.; Hu, D. Dual Role of PDMS on Improving Supercritical CO2 Foaming of Polypropylene: CO2-Philic Additive and Crystallization Nucleating Agent. J. Supercrit. Fluids 2020, 163, 104888. [Google Scholar] [CrossRef]
- Wang, J.; Lee, P.C.; Park, C.B. Visualization of Initial Expansion Behavior of Butane-Blown Low-Density Polyethylene Foam at Extrusion Die Exit. Polym. Eng. Sci. 2011, 51, 492–499. [Google Scholar] [CrossRef]
- Park, C.B.; Suh, N.P. Filamentary Extrusion of Microcellular Polymers Using a Rapid Decompressive Element. Polym. Eng. Sci. 1996, 36, 34–48. [Google Scholar] [CrossRef]
- Taki, K.; Nakayama, T.; Yatsuzuka, T.; Ohshima, M. Visual Observations of Batch and Continuous Foaming Processes. J. Cell. Plast. 2003, 39, 155–169. [Google Scholar] [CrossRef]
- Janssen, L.P.B.M.; Nalawade, S.P. Polymer Extrusion with Supercritical Carbon Dioxide. In Supercritical Carbon Dioxide; Kemmere, M.F., Meyer, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 255–272. [Google Scholar]
- Bernardo, V.; Martin-de Leon, J.; Pinto, J.; Catelani, T.; Athanassiou, A.; Rodriguez-Perez, M.A. Low-Density PMMA/MAM Nanocellular Polymers Using Low MAM Contents: Production and Characterization. Polymer 2019, 163, 115–124. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Fages, J. Extrusion Assisted by Supercritical CO2: A Review on Its Application to Biopolymers. J. Supercrit. Fluids 2017, 120, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Liu, H.; Li, L.; Wang, X.; Lu, A.; Luo, S. Microstructure and Properties of Microcellular Poly (Phenylene Sulfide) Foams by Mucell Injection Molding. Polym.-Plast. Technol. Eng. 2013, 52, 440–445. [Google Scholar] [CrossRef]
- Magjarevic, R.; Wu, H.; Krampe, E.; Schlicht, H.; Wintermantel, E. Application of a Microcellular Injection Molding Process (MuCell®) to Produce an Implant with Porous Structure. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; Dössel, O., Schlegel, W.C., Eds.; IFMBE Proceedings. Springer: Berlin/Heidelberg, Germany, 2009; Volume 25/10, pp. 61–64. [Google Scholar]
- Xu, Z.; Xue, P.; Zhu, F.; He, J. Effects of Formulations and Processing Parameters on Foam Morphologies in the Direct Extrusion Foaming of Polypropylene Using a Single-Screw Extruder. J. Cell. Plast. 2005, 41, 169–185. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, G.; Wang, J.; Wang, G.; Zhang, W. Effects of Process Parameters on Core-Back Foam Injection Molding Process. Express Polym. Lett. 2019, 13, 390–405. [Google Scholar] [CrossRef]
- Lee, P.C.; Kaewmesri, W.; Wang, J.; Park, C.B.; Pumchusak, J.; Folland, R.; Praller, A. Effect of Die Geometry on Foaming Behaviors of High-Melt-Strength Polypropylene with CO2. J. Appl. Polym. Sci. 2008, 109, 3122–3132. [Google Scholar] [CrossRef]
- Chauvet, M. Extrusion Assistée par CO2 Supercritique appliquée au Moussage d’un Biopolymère, le Poly(acide lactique), Seul ou en Mélange à de L’amidon: Étude Expérimentale et Modélisation; Génie des proceeds; Université de Toulouse: Toulouse, France, 2017. [Google Scholar]
- Alavi, S.; Rizvi, S.S.H. Strategies for Enhancing Expansion in Starch-Based Microcellular Foams Produced by Supercritical Fluid Extrusion. Int. J. Food Prop. 2005, 8, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Baldwin, D.F.; Suh, N.P. Effect of the Pressure Drop Rate on Cell Nucleation in Continuous Processing of Microcellular Polymers. Polym. Eng. Sci. 1995, 35, 432–440. [Google Scholar] [CrossRef]
- Pinto, J.; Dumon, M.; Pedros, M.; Reglero, J.; Rodriguez-Perez, M.A. Nanocellular CO2 Foaming of PMMA Assisted by Block Copolymer Nanostructuration. Chem. Eng. J. 2014, 243, 428–435. [Google Scholar] [CrossRef]
- Guo, H.; Nicolae, A.; Kumar, V. Solid-State Microcellular and Nanocellular Polysulfone Foams. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 975–985. [Google Scholar] [CrossRef]
- Pinto, J.; Notario, B.; Verdejo, R.; Dumon, M.; Costeux, S.; Rodriguez-Perez, M.A. Molecular Confinement of Solid and Gaseous Phases of Self-Standing Bulk Nanoporous Polymers Inducing Enhanced and Unexpected Physical Properties. Polymer 2017, 113, 27–33. [Google Scholar] [CrossRef]
- Bernardo, V.; Martin-de Leon, J.; Rodriguez-Perez, M.A. Highly Anisotropic Nanocellular Polymers Based on Tri-Phasic Blends of PMMA with Two Nucleating Agents. Mater. Lett. 2019, 255, 126587. [Google Scholar] [CrossRef]
Polymers | T (°C) | Pressure (MPa) | CO2 Solubility (%) | Reference |
---|---|---|---|---|
Aliphatic and aromatic hydrocarbons (including polyolefins, polystyrenes and polyethers) | ||||
hydroxytelechelic | 40 | 25 | 15 | [50] |
poly(butylene) (HTPB) | ||||
low density poly(ethylene) (LDPE) | 150 | 0.7–3.5 | 0.5–2.5 | [51] |
25–40 | 7 | 0.2 | [52] | |
high density poly(ethylene) (HDPE) | 200 | 6.6–17 | 3.1–9.3 | [53] |
200 | 10 | 4.5 | [53] | |
160 | 18 | 13 | [53] | |
poly(ethylene glycol) (PEG) | 40 | 5.3–11.6 | 11.1–22.6 | [54] |
400 g/mol | 55 | 3–28 | 14–30 | [55] |
1500 g/mol | 40 | 15 | 23 | [56] |
non commercial PEG | 70 | 30 | 50 | [57,58] |
poly(ether imide) (PEI) | 30 | 0.1 | 1 | [59] |
poly(isobutylene) (PIB) | 50 | 20 | 16 | [60] |
isotactic poly(propylene) (iPP) | 200 | 6.2–15.4 | 3–11 | [53] |
180 | 18 | 14 | [53] | |
180 | 11.5 | 8 | [53] | |
160 | 7.5–17.5 | 5–16 | [53] | |
atactic poly(propylene) (aPP) | 120 | 20 | 18 | [61] |
200 | 20 | 14 | [61] | |
atactic poly(styrene) (aPS) | 40 | 30 | 10 | [9] |
80 | 30 | 9 | [9] | |
180 | 18 | 7 | [53] | |
180 | 10 | 4 | [53] | |
100 | 18.5 | 11.5 | [53] | |
180 | 20 | 5 | [62] | |
Carbonyl containing polymers | ||||
poly(amide) (PA6) | 240 | 5–18 | 1.2–4 | [63] |
poly(butylene succinate) (PBS) | 120 | 2.5–20 | 2–17 | [64] |
poly(carbonate) (PC) | 25 | 7 | 13 | [65] |
Aromatic poly(ether amide) (PEA) | 30 | 0.1 | 0.9 | [59] |
poly(ethyl methacrylate) (PEMA) | 25 | 1.4 | 4.8 | [66] |
poly(ethylene terephthalate) (PET) | 80–120 | 0–35 | 0–25 | [67] |
poly(lactic acid) (PLLA) | 40 | 15 | 20–25 | [68] |
poly(methyl methacrylate) (PMMA) | 40 | 10.5 | 18.2 | [69] |
20 | 30 | 12.1 | [12] | |
40 | 30 | 16.4 | [12] | |
100 | 15 | 10 | [70] | |
150 | 5 | 3 | [70] | |
200 | 20 | 8 | [70] | |
50 | 20 | 25 | [70] | |
35 | 20 | 30 | [70] | |
25 | 7 | 26 | [65] | |
25 | 2 | 5–7 | [71] | |
25 | 1.4 | 4.4 | [66] | |
–32 | 20 | 48 | [42] | |
poly(vinyl acetate) (PVAC) | 25 | 1.4 | 6 | [66] |
Silicone containing polymers | ||||
poly(dimethylsiloxane) (PDMS) linear | 50 | 10 | 25 | [69] |
10 | 20 | 8.5–10 | [69] | |
crosslinked | 35 | 2 | 5 | [72] |
55 | 2 | 4 | [72] | |
42 | 20 | 55 | [72] | |
42 | 7 | 20–30 | [72] | |
Fluorinated or chlorinated polymers and copolymers | ||||
poly(vinyl chloride) (PVC) | 40–70 | 5–30 | 5.5–13 | [73] |
poly(vinylidene fluoride) (PVDF) | 220 | 10 | 3 | [74] |
poly(perfluoro-2-methylene-1,3-dioxolane) (poly(PFMD)) | 35 | 1 | 10 | [75] |
poly(tetrafluoroethylene) (PTFE) | 30 | 1 | 2.5 | [76] |
PS-b-PFDA | 0 | 30 | 32 | [75,77,78] |
Other fluorinated copolymers | * | * | * |
Batch Foaming | Extrusion Foaming | Injection Foaming | |
---|---|---|---|
Process | Discontinuous | Continuous | Continuous |
Polymer state | Solid | Initially solid pellets Melted polymer during the process | Initially solid pellets Melted polymer during the process |
CO2 role | Foaming agent | Plastifying effect + foaming agent | Plasticizer (in the extruder) + foaming agent |
Pressure | Easily controlled into the vessel The depressurization rate can be controlled with a valve. | Indirectly controlled with the screw rate in the barrel, the shearing and with the die geometry Depressurization happens at the end of the die | -Pressure in the injection molding machine as in extrusion foaming Expansion occurs in the mold (mold may be opened at various controlled thicknesses) |
Temperature | Usually Tfoaming is close to Tg to ensure cell growth during the gas expansion | At the beginning T to melt the pellets Then, depending on the materials’ viscosity the temperature has to be decreased | In the screw zone, same events as extrusion foaming Then, mold temperature is better controlled with heaters or fluid circulation (water or oil) |
Saturation time | Easy to control Usually long time due to the thickness of the samples | Indirectly controlled by the extrusion rate (linked to the screw rate and the viscosity of the material at the temperature used) Faster than in batch-foaming because polymer is melted | Controlled by the screw speed + the molding time chosen Faster than batch foaming |
References | [11,87,89] | [86,87,90] | [35,36,91,92] |
PMMA/20 wt% Additive | Average Density (103 kg·m−3) | Average Pore Diameter (µm) |
---|---|---|
MAM | 0.29 | 12.8 |
D200 | 0.30 | 14.5 |
D480 | 0.32 | 13.5 |
Dlab | 0.24 | 15.5 |
Psat (MPa) | Tsat (°C) | Post Treatment | ρpmma/20wt%D200 (103 kg·m−3) | ρpmma/20wt%D480 (103 kg·m−3) | ρpmma/20wt%Dlab (103 kg·m−3) | ρpmma/20wt%MAM (103 kg·m−3) |
---|---|---|---|---|---|---|
10 | 30 | OS + IB | NF | NF | NF | NF |
10 a | 30 | OS | 0.81 | 0.83 | 0.7 | 0.9 |
10 b | 60 | OS | 0.7 | 0.71 | 0.63 | - |
31.5 c | 80 | OS | 0.3 | 0.32 | 0.24 | 0.29 |
10 d | 80 | OS | 0.57 | 0.55 | 0.56 | 0.52 |
7.5 e | 100 | OS | 0.5 | 0.52 | 0.5 | 0.5 |
Material | State at Tamb | Other Characteristics | Density (103 kg·m−3) | Aspect |
---|---|---|---|---|
PMMA V825T clear 101 | Glassy amorphous solid | Use as polymer matrix | 1.19 | Transparent |
MAM M42 | Rubbery center block | Triblock copolymer PMMA-36 wt% PBA *-PMMA | 1.18 | Transparent |
Core shell D ** 200 | Crosslinked soft core | PBA core, PMMA shell | 1.14 | Opalescent |
Core shell D480 | Crosslinked soft core | PBA core, PMMA shell | 1.21 | Opaque |
Core shell Dlab | Liquid core uncrosslinked | PBA core, PMMA shell | 1.13 | Opaque |
Sample Availability: Samples of the compounds are not normally available from the authors, unless good and reasonable reasons are provided (fruitful collaborations, patenting, etc.). | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haurat, M.; Dumon, M. Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes. Molecules 2020, 25, 5320. https://doi.org/10.3390/molecules25225320
Haurat M, Dumon M. Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes. Molecules. 2020; 25(22):5320. https://doi.org/10.3390/molecules25225320
Chicago/Turabian StyleHaurat, Margaux, and Michel Dumon. 2020. "Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes" Molecules 25, no. 22: 5320. https://doi.org/10.3390/molecules25225320
APA StyleHaurat, M., & Dumon, M. (2020). Amorphous Polymers’ Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO2, a Way to Fabricate Porous Polymers from Macro to Nano Porosities in Batch or Continuous Processes. Molecules, 25(22), 5320. https://doi.org/10.3390/molecules25225320