A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins
Abstract
:1. Introduction
2. Results
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D.C.; Crabtree, R.H.; Dannenberg, J.J.; Hobza, P.; et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. [Google Scholar] [CrossRef]
- Baker, E.N.; Hubbard, R.E. Hydrogen-Bonding in Globular-Proteins. Prog. Biophys. Mol. Biol. 1984, 44, 97–179. [Google Scholar] [CrossRef]
- Meot-Ner, M. The ionic hydrogen bond. Chem. Rev. 2005, 105, 213–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissantz, C.; Kuhn, B.; Stahl, M. A Medicinal Chemist’s Guide to Molecular Interactions. J. Med. Chem. 2010, 53, 5061–5084. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Petsko, G.A. Weakly Polar Interactions in Proteins. Adv. Protein Chem. 1988, 39, 125–189. [Google Scholar]
- Dill, K.A. Dominant Forces in Protein Folding. Biochemistry 1990, 29, 7133–7155. [Google Scholar] [CrossRef]
- Fersht, A.R.; Shi, J.P.; Knill-Jones, J.; Lowe, D.M.; Wilkinson, A.J.; Blow, D.M.; Brick, P.; Carter, P.; Waye, M.M.; Winter, G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature 1985, 314, 235–238. [Google Scholar] [CrossRef]
- Hubbard, R.E. Hydrogen Bonds in Proteins: Role and Strength. In Encyclopedia of Life Sciences; Nature Publishing Group: London, UK, 2001. [Google Scholar]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef]
- Garcia, A.E.; Sanbonmatsu, K.Y. α-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc. Natl. Acad. Sci. USA 2002, 99, 2782–2787. [Google Scholar] [CrossRef] [Green Version]
- Vogt, G.; Woell, S.; Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 1997, 269, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Derewenda, Z.S.; Lee, L.; Derewenda, U. The Occurrence of C–H···O Hydrogen-Bonds in Proteins. J. Mol. Biol. 1995, 252, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Dragelj, J.L.; Stankovic, I.M.; Bozinovski, D.M.; Meyer, T.; Veljkovic, D.Z.; Medakovic, V.B.; Knapp, E.W.; Zaric, S.D. C-H/O Interactions of Aromatic CH Donors within Proteins: A Crystallographic Study. Cryst. Growth Des. 2016, 16, 1948–1957. [Google Scholar] [CrossRef]
- Fleming, P.J.; Rose, G.D. Do all backbone polar groups in proteins form hydrogen bonds? Protein Sci. 2005, 14, 1911–1917. [Google Scholar] [CrossRef] [PubMed]
- Levinson, N.M.; Boxer, S.G. A Conserved Water-Mediated Hydrogen Bond Network Underlies Selectivity of the Kinase Inhibitor Bosutinib. Biophys. J. 2014, 106, 647a. [Google Scholar] [CrossRef] [Green Version]
- Boobbyer, D.N.A.; Goodford, P.J.; Mcwhinnie, P.M.; Wade, R.C. New Hydrogen-Bond Potentials for Use in Determining Energetically Favorable Binding-Sites on Molecules of Known Structure. J. Med. Chem. 1989, 32, 1083–1094. [Google Scholar] [CrossRef]
- Hamdane, D.; Bou-Nader, C.; Cornu, D.; Hui-Bon-Hoa, G.; Fontecave, M. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond. Biochemistry 2015, 54, 4354–4364. [Google Scholar] [CrossRef]
- Zhou, P.; Tian, F.F.; Lv, F.L.; Shang, Z.C. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins Struct. Funct. Bioinform. 2009, 76, 151–163. [Google Scholar] [CrossRef]
- Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900. [Google Scholar] [CrossRef]
- Nanda, V.; Schmiedekamp, A. Are aromatic carbon donor hydrogen bonds linear in proteins? Proteins Struct. Funct. Bioinform. 2008, 70, 489–497. [Google Scholar] [CrossRef]
- Brandl, M.; Weiss, M.S.; Jabs, A.; Suhnel, J.; Hilgenfeld, R. C-H···π-interactions in proteins. J. Mol. Biol. 2001, 307, 357–377. [Google Scholar] [CrossRef]
- Plevin, M.J.; Bryce, D.L.; Boisbouvier, J. Direct detection of CH/π interactions in proteins. Nat. Chem. 2010, 2, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Kubickova, A.; Krizek, T.; Coufal, P.; Wernersson, E.; Heyda, J.; Jungwirth, P. Guanidinium Cations Pair with Positively Charged Arginine Side Chains in Water. J. Phys. Chem. Lett. 2011, 2, 1387–1389. [Google Scholar] [CrossRef]
- Morozov, A.V.; Kortemme, T.; Tsemekhman, K.; Baker, D. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc. Natl. Acad. Sci. USA 2004, 101, 6946–6951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.; Benhabiles, N.; Meurisse, R.; Ngwabije, R.; Brasseur, R. Pex, analytical tools for PDB files. II. H-Pex: Noncanonical H-bonds in α-helices. Proteins Struct. Funct. Bioinform. 2001, 43, 37–44. [Google Scholar] [CrossRef]
- Chen, J.C.H.; Hanson, B.L.; Fisher, S.Z.; Langan, P.; Kovalevsky, A.Y. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography. Proc. Natl. Acad. Sci. USA 2012, 109, 15301–15306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordier, F.; Grzesiek, S. Direct observation of hydrogen bonds in proteins by interresidue 3hJNC’ scalar couplings. J. Am. Chem. Soc. 1999, 121, 1601–1602. [Google Scholar] [CrossRef]
- O’Meara, M.J.; Leaver-Fay, A.; Tyka, M.D.; Stein, A.; Houlihan, K.; DiMaio, F.; Bradley, P.; Kortemme, T.; Baker, D.; Snoeyink, J.; et al. Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Forrest, L.R.; Honig, B. An assessment of the accuracy of methods for predicting hydrogen positions in protein structures. Proteins Struct. Funct. Bioinform. 2005, 61, 296–309. [Google Scholar] [CrossRef]
- Bas, D.C.; Rogers, D.M.; Jensen, J.H. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins Struct. Funct. Bioinform. 2008, 73, 765–783. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct. Funct. Bioinform. 2005, 61, 704–721. [Google Scholar] [CrossRef]
- Warshel, A.; Sharma, P.K.; Kato, M.; Xiang, Y.; Liu, H.B.; Olsson, M.H.M. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006, 106, 3210–3235. [Google Scholar] [CrossRef] [PubMed]
- Watney, J.B.; Agarwal, P.K.; Hammes-Schiffer, S. Effect of mutation on enzyme motion in dihydrofolate reductase. J. Am. Chem. Soc. 2003, 125, 3745–3750. [Google Scholar] [CrossRef] [PubMed]
- Krivov, G.G.; Shapovalov, M.V.; Dunbrack, R.L. Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct. Funct. Bioinform. 2009, 77, 778–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merski, M.; Fischer, M.; Balius, T.E.; Eidam, O.; Shoichet, B.K. Homologous ligands accommodated by discrete conformations of a buried cavity. Proc. Natl. Acad. Sci. USA 2015, 112, 5039–5044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huynh, M.T.; Mora, S.J.; Villalba, M.; Tejeda-Ferrari, M.E.; Liddell, P.A.; Cherry, B.R.; Teillout, A.L.; Machan, C.W.; Kubiak, C.P.; Gust, D.; et al. Concerted One-Electron Two-Proton Transfer Processes in Models Inspired by the Tyr-His Couple of Photosystem II. ACS Cent. Sci. 2017, 3, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Schutz, C.N.; Warshel, A. The low barrier hydrogen bond (LBHB) proposal revisited: The case of the asp his pair in serine proteases. Proteins Struct. Funct. Bioinform. 2004, 55, 711–723. [Google Scholar] [CrossRef]
- Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862–865. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Barlow, D.J.; Thornton, J.M. Ion-Pairs in Proteins. J. Mol. Biol. 1983, 168, 867–885. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Hydrogen bonds with π-acceptors in proteins: Frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 2001, 305, 535–557. [Google Scholar] [CrossRef]
- McRee, D. Practical Protein Crystallography, 2nd ed.; Academic Press: Oxford, UK, 1999. [Google Scholar]
- Panigrahi, S.K.; Desiraju, G.R. Strong and weak hydrogen bonds in the protein-ligand interface. Proteins Struct. Funct. Bioinform. 2007, 67, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.W.; Leaver-Fay, A.; Chen, V.B.; Block, J.N.; Kapral, G.J.; Wang, X.; Murray, L.W.; Arendall, W.B.; Snoeyink, J.; Richardson, J.S.; et al. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007, 35, W375–W383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J. Mol. Biol. 2002, 320, 369–387. [Google Scholar] [CrossRef]
- Kortemme, T.; Morozov, A.V.; Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein–protein complexes. J. Mol. Biol. 2003, 326, 1239–1259. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, B.S.; Pattabhi, V. Role of weak interactions in thermal stability of proteins. Biochem. Biophys. Res. Commun. 2004, 325, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Trachsel, M.A.; Ottigeri, P.; Frey, H.M.; Pfaffen, C.; Bihlmeier, A.; Klopper, W.; Leutwyler, S. Modeling the Histidine–Phenylalanine Interaction: The NH···π Hydrogen Bond of Imidazole Benzene. J. Phys. Chem. B 2015, 119, 7778–7790. [Google Scholar] [CrossRef]
- Steiner, T.; Desiraju, G.R. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem. Commun. 1998, 8, 891–892. [Google Scholar] [CrossRef]
- Karshikoff, A.; Jelesarov, I. Salt bridges and conformational flexibility: Effect on protein stability. Biotechnol. Biotechnol. Equip. 2008, 22, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.C.; Sundaralingam, M. C-H···O hydrogen bonding in biology. Trends Biochem. Sci. 1997, 22, 97–102. [Google Scholar] [CrossRef]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Gurusaran, M.; Sivaranjan, P.; Kumar, K.S.D.; Radha, P.; Tharshan, K.P.S.T.; Satheesh, S.N.; Jayanthan, K.; Ilaiyaraja, R.; Mohanapriya, J.; Michael, D.; et al. Hydrogen Bonds Computing Server (HBCS): An online web server to compute hydrogen-bond interactions and their precision. J. Appl. Crystallogr. 2016, 49, 642–645. [Google Scholar] [CrossRef]
- Laurence, C.; Berthelot, M. Observations on the strength of hydrogen bonding. Perspect. Drug Discov. Des. 2000, 18, 39–60. [Google Scholar] [CrossRef]
- Overington, J.; Johnson, M.S.; Sali, A.; Blundell, T.L. Tertiary Structural Constraints on Protein Evolutionary Diversity: Templates, Key Residues and Structure Prediction. Proc. R. Soc. B: Biol. Sci. 1990, 241, 132–145. [Google Scholar]
- Li, A.J.; Nussinov, R. A set of van der Waals and Coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins Struct. Funct. Bioinform. 1998, 32, 111–127. [Google Scholar] [CrossRef]
- Jiang, L.; Lai, L.H. CH···O hydrogen bonds at protein-protein interfaces. J. Biol. Chem. 2002, 277, 37732–37740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, D.; Frontera, A.; Quinonero, D.; Deya, P.M. Interplay between edge-to-face aromatic and hydrogen-bonding interactions. J. Phys. Chem. A 2008, 112, 6017–6022. [Google Scholar] [CrossRef]
- Cohen, M.; Reichmann, D.; Neuvirth, H.; Schreiber, G. Similar chemistry, but different bond preferences in inter versus intra-protein interactions. Proteins Struct. Funct. Bioinform. 2008, 72, 741–753. [Google Scholar] [CrossRef]
- Newberry, R.W.; Raines, R.T. A prevalent intraresidue hydrogen bond stabilizes proteins. Nat. Chem. Biol. 2016, 12, 1084–1088. [Google Scholar] [CrossRef]
- Tsai, J.; Taylor, R.; Chothia, C.; Gerstein, M. The packing density in proteins: Standard radii and volumes. J. Mol. Biol. 1999, 290, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Kroon, J.; Kanters, J.A. Non-linearity of Hydrogen Bonds in Molecular Crystals. Nature 1974, 248, 667–669. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Donors, Direct | |||||||
Atom | Distance | 25–75 Range | Angle | 25–75 Range | Volume | Notes | |
1 | N | 2.9 | 2.8–3.1 | 171 | 166–176 | 2126 | strand to strand/helix |
2 | NE | 2.8 | 2.7–2.9 | 171 | 165–176 | 1678 | standard bond |
3 | NE1 | 2.8 | 2.8–2.9 | 172 | 166–176 | 1659 | standard bond (Trp) |
4 | ND1 | 2.7 | 2.7–2.8 | 173 | 168–177 | 1511 | standard bond |
5 | OD1 | 2.8 | 2.8–2.9 | 136 | 124–151 | 839 | standard bond |
6 | NH2 | 2.9 | 2.8–3.0 | 105 | 92–119 | 827 | standard bond |
7 | OD2 | 2.8 | 2.7–2.8 | 125 | 118–133 | 780 | standard bond |
8 | NZ | 2.8 | 2.7–2.8 | 107 | 99–114 | 777 | standard bond |
9 | NE2 | 2.7 | 2.7–2.8 | 173 | 169–177 | 766 | His bond |
10 | ND2 | 2.9 | 2.8–2.9 | 120 | 114–126 | 719 | standard bond |
11 | OH | 2.6 | 2.6–2.7 | 115 | 112–119 | 610 | standard bond |
12 | OE2 | 2.8 | 2.7–2.8 | 123 | 117–130 | 590 | standard bond |
13 | NH1 | 2.8 | 2.8–2.9 | 132 | 127–136 | 576 | standard bond |
14 | OG | 2.7 | 2.6–2.8 | 113 | 105–120 | 529 | standard bond |
15 | OG1 | 2.7 | 2.6–2.8 | 112 | 106–118 | 504 | standard bond |
Donors, Indirect Indirect | |||||||
Atom | Distance | 25–75 Range | Angle | 25–75 Range | Volume | Notes | |
1 | N | 2.9 | 2.8–2.9 | 159 | 154–166 | 1197 | strand to strand/helix |
2 | NE | 2.8 | 2.7–2.8 | 135 | 120–148 | 349 | standard bond |
3 | NE1 | 2.8 | 2.8–2.9 | 135 | 125–142 | 368 | standard bond |
4 | ND1 | 2.9 | 2.8–3.0 | 170 | 166–176 | 353 | standard bond |
5 | OD1 | 2.8 | 2.8–2.9 | 171 | 164–176 | 1414 | standard bond |
6 | NH2 | 2.8 | 2.8–2.9 | 137 | 123–150 | 986 | standard bond |
7 | OD2 | 2.8 | 2.7–2.9 | 173 | 168–177 | 1562 | standard bond |
8 | NZ | 2.8 | 2.7–2.8 | 148 | 134–163 | 1232 | standard bond |
9 | NE2 | 2.8 | 2.8–2.9 | 141 | 132–154 | 601 | standard bond(Gln and His (poor)) |
10 | ND2 | 2.9 | 2.8–2.9 | 142 | 131–156 | 966 | standard bond |
11 | OH | 2.6 | 2.5–2.6 | 131 | 122–139 | 502 | standard bond |
11a | OH | 2.8 | 2.7–2.9 | 174 | 169–177 | 577 | standard bond |
12 | OE2 | 2.8 | 2.7–2.9 | 174 | 168–177 | 1334 | standard bond |
13 | NH1 | 2.8 | 2.8–2.9 | 140 | 129–152 | 953 | standard bond |
14 | OG | 2.8 | 2.7–3.0 | 164 | 150–172 | 1239 | standard bond |
15 | OG1 | 2.8 | 2.7–2.9 | 160 | 144–169 | 1234 | standard bond |
Acceptors, Direct | |||||||
Atom | Distance | 25–75 Range | Angle | 25–75 Range | Volume | Notes | |
1 | O | 2.9 | 2.8–3.2 | 156 | 150–162 | 1073 | strand to strand/helix |
2 | SD | 3.8 | 3.8–3.9 | 140 | 132–147 | 439 | CH-acceptor bond |
3 | OD2 | 2.8 | 2.7–2.8 | 124 | 119–132 | 324 | standard bond |
4 | OD1 | 2.8 | 2.8–2.9 | 137 | 131–144 | 182 | standard bond |
5 | OE2 | 2.8 | 2.7–2.8 | 123 | 119–127 | 160 | standard bond |
6 | OH | 2.6 | 2.5–2.6 | 115 | 113–118 | 154 | standard bond |
7 | ND1 | 3.2 | 3.1–3.3 | 95 | 91–99 | 305 | poor bond |
Acceptors, Indirect Indirect | |||||||
Atom | Distance | 25–75 Range | Angle | 25–75 Range | Volume | Notes | |
1 | O | 2.9 | 2.8–3.0 | 170 | 164–176 | 1478 | strand to strand/helix |
2 | SD | 3.8 | 3.7–4.0 | 163 | 152–174 | 856 | CH-acceptor bond |
3 | OD2 | 2.8 | 2.7–2.9 | 173 | 168–177 | 1001 | standard bond |
4 | OD1 | 2.8 | 2.8–2.9 | 171 | 164–176 | 958 | standard bond |
5 | OE2 | 2.8 | 2.7–2.9 | 174 | 169–178 | 791 | standard bond |
6 | OH | 2.9 | 2.8–3.0 | 176 | 173–178 | 248 | standard bond |
7 | ND1 | 3.2 | 3.1–3.3 | 112 | 109–115 | 236 | poor bond |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merski, M.; Skrzeczkowski, J.; Roth, J.K.; Górna, M.W. A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins. Molecules 2020, 25, 5326. https://doi.org/10.3390/molecules25225326
Merski M, Skrzeczkowski J, Roth JK, Górna MW. A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins. Molecules. 2020; 25(22):5326. https://doi.org/10.3390/molecules25225326
Chicago/Turabian StyleMerski, Matthew, Jakub Skrzeczkowski, Jennifer K. Roth, and Maria W. Górna. 2020. "A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins" Molecules 25, no. 22: 5326. https://doi.org/10.3390/molecules25225326
APA StyleMerski, M., Skrzeczkowski, J., Roth, J. K., & Górna, M. W. (2020). A Geometric Definition of Short to Medium Range Hydrogen-Mediated Interactions in Proteins. Molecules, 25(22), 5326. https://doi.org/10.3390/molecules25225326