Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta
Abstract
:1. Introduction
2. Results and Discussion
2.1. SCF Structure in the Widom Delta
2.2. Molecular Refraction
2.3. Nonlinear Refractive Index
2.4. Raman Spectroscopy
2.5. Mie Scattering
2.6. Macroscopic Properties Simulation
2.7. Simulation of scCO2-Ethanol Mixture (3:1 Molar Fraction)
3. Methods
3.1. Raman Spectroscopy
3.2. Nonlinear Refractive Index and Molecular Refractive Index Measurements
3.3. Mie Scattering
3.4. Molecular Dynamics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gorelli, F.A.; Bryk, T.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T. Dynamics and Thermodynamics beyond the critical point. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Simeoni, G.G.; Bryk, T.; Gorelli, F.A.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat. Phys. 2010, 6, 503–507. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P.F.; Stanley, H.E. Fluid phases: Going supercritical. Nat. Phys. 2010, 6, 479–480. [Google Scholar] [CrossRef]
- NIST Database. Available online: http://webbook.nist.gov/ (accessed on 10 June 2020).
- Imre, A.R.; Ramboz, C.; Deiters, U.K.; Kraska, T. Anomalous fluid properties of carbon dioxide in the supercritical region: Application to geological CO2 storage and related hazards. Environ. Earth Sci. 2015, 73, 4373–4384. [Google Scholar] [CrossRef] [Green Version]
- Eckert, C.A.; Knutson, B.L.; Debenedetti, P.G. Supercritical fluids as solvents for chemical and materials processing. Nature 1996, 383, 313–318. [Google Scholar] [CrossRef]
- Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Hrnčič, M.K.; Škerget, M. Industrial applications of supercritical fluids: A review. Energy 2014, 77, 235–243. [Google Scholar] [CrossRef]
- Nishikawa, K.; Tanaka, I. Correlation lengths and density fluctuations in supercritical states of carbon dioxide. Chem. Phys. Lett. 1995, 244, 149–152. [Google Scholar] [CrossRef]
- Ha, M.Y.; Yoon, T.J.; Tlusty, T.; Jho, Y.; Lee, W.B. Widom Delta of Supercritical Gas-Liquid Coexistence. J. Phys. Chem. Lett. 2018, 9, 1734–1738. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, F.; Poole, P.H.; Essmann, U.; Stanley, H.E. Line of compressibility maxima in the phase diagram of supercooled water. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1997, 55, 727–737. [Google Scholar] [CrossRef] [Green Version]
- May, H.O.; Mausbach, P. Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2012, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, A.V.; Tatarenko, K.A. Gas dynamic model of the expansion of a supercritical carbon dioxide pulse jet: A self-similar solution. Russ. J. Phys. Chem. B 2016, 10, 1248–1255. [Google Scholar] [CrossRef]
- Jinno, S.; Kanasaki, M.; Uno, M.; Matsui, R.; Uesaka, R.; Kishimoto, Y.; Fukuda, Y. Characterization of Micron-sized Hydrogen Cluster Target for Laser- Driven Proton Acceleration. Plasma Phys. Control. Fusion 2018, 60, 044021. [Google Scholar] [CrossRef]
- Quevedo, H.J.; Zhang, G.; Bonasera, A.; Donovan, M.; Dyer, G.; Gaul, E.; Guardo, G.L.; Gulino, M.; La Cognata, M.; Lattuada, D.; et al. Neutron enhancement from laser interaction with a critical fluid. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2018, 382, 94–98. [Google Scholar] [CrossRef]
- Raju, M.; Banuti, D.T.; Ma, P.C.; Ihme, M. Widom lines in binary mixtures of supercritical fluids. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalanne, P.; Tassaing, T.; Danten, Y.; Cansell, F.; Tucker, S.C.; Besnard, M. CO2-Ethanol Interaction Studied by Vibrational Spectroscopy in Supercritical CO2. J. Phys. Chem. A 2004, 108, 2617–2624. [Google Scholar] [CrossRef]
- Mareev, E.I.; ALeshkevich, V.; Potemkin, F.V.; Bagratashvili, V.N.; Minaev, N.V.; Gordienko, V.M. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states. Opt. Express 2018, 26, 13229–13238. [Google Scholar] [CrossRef]
- Louvel, M.; Bordage, A.; Da Silva-Cadoux, C.; Testemale, D.; Lahera, E.; Del Net, W.; Geaymond, O.; Dubessy, J.; Argoud, R.; Hazemann, J.L. A high-pressure high-temperature setup for in situ Raman spectroscopy of supercritical fluids. J. Mol. Liq. 2015, 205, 54–60. [Google Scholar] [CrossRef]
- Downes, A.; Elfick, A. Raman spectroscopy and related techniques in biomedicine. Sensors 2010, 10, 1871–1889. [Google Scholar] [CrossRef] [Green Version]
- Arakcheev, V.G.; Bagratashvili, V.N.; Valeev, A.; Gordiyenko, V.M.; Kireev, V.V.; Morozov, V.B.; Olenin, A.N.; Popov, V.K.; Tunkin, V.G.; Yakovlev, D.V. Linewidths and shifts of carbon dioxide CARS spectra near the critical point. J. Raman Spectrosc. 2003, 34, 952–956. [Google Scholar] [CrossRef]
- Morita, T.; Nishikawa, K.; Takematsu, M.; Iida, H.; Furutaka, S. Structure study of supercritical CO2 near high-order phase transition line by X-ray diffraction. J. Phys. Chem. B 1997, 101, 7158–7162. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Rhee, H.; Eichler, H.J.; Bohatý, L.; Becker, P.; Takaichi, K. Wide-band Raman stokes and anti-Stokes comb lasing in a BaF2 single crystal under picosecond pumping. Laser Phys. Lett. 2008, 5, 304–310. [Google Scholar] [CrossRef]
- Kane, M.A.; Daniel, S.N.; Niemeyer, E.D.; Bright, F.V. Spectroscopic Investigations of Intermolecular Interactions in Supercritical Fluids. In New Trends in Fluorescence Spectroscopy Applications to Chemical and Life Sciences; Valeur, B., Brochon, J.-C., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 81–97. [Google Scholar]
- Mareev, E.I.; Aleshkevich, V.A.; Potemkin, F.V.; Minaev, N.V.; Gordienko, V.M. Molecular Refraction and Nonlinear Refractive Index of Supercritical Carbon Dioxide under Clustering Conditions. Russ. J. Phys. Chem. B 2019, 13, 1–6. [Google Scholar] [CrossRef]
- Stoiljković, D.; Jovanović, S. Compression, supramolecular organization and free radical polymerization of ethylene gas. Polyolefins J. 2019, 6, 23–41. [Google Scholar] [CrossRef]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Caledron Press: Oxford, UK, 1987. [Google Scholar]
- Bhatia, P. Using Raman Spectroscopy to Study Supercritical CO2; Massachusetts Institute of Technology: Cambridge, MA, USA, 1999. [Google Scholar]
- Kauffman, J.F. Quadrupolar Solvent Effects on Solvation and Reactivity of Solutes Dissolved in Supercritical CO2. J. Phys. Chem. A 2001, 105, 3433–3442. [Google Scholar] [CrossRef]
- Smith, E.; Dent, G. Modern Raman Sectroscopy-A Practical Approach; John Wiley & Sons: Manchester, UK, 2005; Volume 5, ISBN 0-471-49668-5. [Google Scholar]
- Arefiev, A.V.; Gao, X.; Tushentsov, M.R.; Wang, X.; Shim, B.; Breizman, B.N.; Downer, M.C. Size distribution and mass fraction of microclusters in laser-irradiated plasmas. High Energy Density Phys. 2010, 6, 121–127. [Google Scholar] [CrossRef]
- Mätzler, C. MATLAB Functions for Mie Scattering and Absorption. IAP Res. Rep. 2002, 8, 1139–1151. [Google Scholar] [CrossRef]
- Jinno, S.; Fukuda, Y.; Sakaki, H.; Yogo, A.; Kanasaki, M.; Kondo, K.; Faenov, A.Y.; Skobelev, I.Y.; Pikuz, T.A.; Boldarev, A.S.; et al. Characterization of submicron-sized CO2 clusters formed with a supersonic expansion of a mixed-gas using a three-staged nozzle. Appl. Phys. Lett. 2013, 102, 164103. [Google Scholar] [CrossRef]
- Jang, D.G.; You, Y.S.; Milchberg, H.M.; Suk, H.; Kim, K.Y. All-optical characterization of cryogenically cooled argon clusters in continuous gas jets. Appl. Phys. Lett. 2014, 105, 1–5. [Google Scholar] [CrossRef]
- Bohren, C.F. Absorption and scattering of light by small particles. Absorpt. Scatt. Light Small Part. 1983. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short–Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–42. [Google Scholar] [CrossRef] [Green Version]
- COMPASS. Force Field Manual. Available online: http://www.esi.umontreal.ca/accelrys/pdf/compass98.pdf (accessed on 10 November 2020).
- Rigby, D. Fluid density predictions using the COMPASS force field. Fluid Phase Equilib. 2004, 217, 77–87. [Google Scholar] [CrossRef]
Conditions in the Supercritical Cell | ρ (g/cm3) CO2 | R, nm | n, cm−3 |
---|---|---|---|
P = 80 bar, T = 315 K | 0.26 | 50 ± 2 | 9.6 × 1011 |
P = 75 bar, T = 315 K | 0.22 | 51 ± 1.5 | 3.14 × 1012 |
P = 70 bar, T = 315 K | 0.19 | 54 ± 2 | 3.2 × 1011 |
P = 64 bar, T = 315 K | 0.16 | 60 ± 3 | 4.9 × 1010 |
P = 80 bar, T = 306 K | 0.62 | 49 ± 1.5 | 2.4 × 1012 |
P = 75 bar, T = 306 K | 0.316 | 51 ± 1.5 | 6 × 1011 |
P = 70 bar, T = 306 K | 0.234 | 50 ± 1.5 | 5.6 × 1011 |
P = 64 bar, T = 306 K | 0.186 | 57 ± 2.5 | 8 × 1010 |
P = 83 bar, T = 343 K | 0.18 | 50 ± 1 | 5 × 1011 |
P = 73 bar, T = 343 K | 0.15 | 54 ± 1.5 | 1.76 × 1011 |
Sample Availability: Samples of the compound are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mareev, E.; Semenov, T.; Lazarev, A.; Minaev, N.; Sviridov, A.; Potemkin, F.; Gordienko, V. Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta. Molecules 2020, 25, 5424. https://doi.org/10.3390/molecules25225424
Mareev E, Semenov T, Lazarev A, Minaev N, Sviridov A, Potemkin F, Gordienko V. Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta. Molecules. 2020; 25(22):5424. https://doi.org/10.3390/molecules25225424
Chicago/Turabian StyleMareev, Evgenii, Timur Semenov, Alexander Lazarev, Nikita Minaev, Alexander Sviridov, Fedor Potemkin, and Vyacheslav Gordienko. 2020. "Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta" Molecules 25, no. 22: 5424. https://doi.org/10.3390/molecules25225424
APA StyleMareev, E., Semenov, T., Lazarev, A., Minaev, N., Sviridov, A., Potemkin, F., & Gordienko, V. (2020). Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta. Molecules, 25(22), 5424. https://doi.org/10.3390/molecules25225424