Assembling the Puzzle of Taxifolin Polymorphism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology Analysis
2.2. Spectral Analysis
2.3. Thermal Analysis
2.4. X-ray Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Microtubes
3.3. Preparation of Microspheres
3.4. SEM
3.5. Particle Size Analysis
3.6. UV Spectroscopy
3.7. Mass Spectrometry
3.8. NMR 1H
3.9. Thermal Analysis
3.10. XRPD
3.11. Variable-Temperature Powder X-ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Scannell, J.W.; Hinds, S.; Evance, R. Financial Returns on R&D: Looking Back at History, Looking Forward to Adaptive Licensing. Rev. Recent Clin. Trials 2015, 10, 28–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savaliya, R.; Singh, P.; Singh, S. Pharmacological Drug Delivery Strategies for Improved Therapeutic Effects: Recent Advances. Curr. Pharm. Des. 2016, 22, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Chadha, R.; Saini, A.; Arora, P.; Bhandari, S. Pharmaceutical Cocrystals: A Novel Approach for Oral Bioavailability Enhancement of Drugs. Crit. Rev. Ther. Drug Carrier Syst. 2012, 29, 183–218. [Google Scholar] [CrossRef]
- Vernadsky, V.I. O Polimorfizme Kak Obshchem Svojstve Materii; Univ. Tip.: Moscow, Russia, 1891. (In Russian) [Google Scholar]
- Brog, J.-P.; Chanez, C.-L.; Crochet, A.; Fromm, K.M. Polymorphism, what it is and how to identify it: A systematic review. RSC Adv. 2013, 38, 16905–16931. [Google Scholar] [CrossRef] [Green Version]
- Pogoda, S.; Janczak, J.; Videnova-Adrabinska, V. New polymorphs of an old drug: Conformational and synthon polymorphism of 5-nitrofurazone. Acta Cryst. B 2016, 72, 263–273. [Google Scholar] [CrossRef]
- Herman, C.; Vermylen, V.; Norberg, B.; Wouters, J.; Leyssen, T. The importance of screening solid-state phases of a racemic modification of a chiral drug: Thermodynamic and structural characterization of solid-state phases of etiracetam. Acta Cryst. B 2013, 69, 371–378. [Google Scholar] [CrossRef]
- Smith, A.J.; Kavuru, P.; Arora, K.K.; Kesani, S.; Tan, J.; Zaworotko, M.J.; Shytle, R.D. Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats. Mol. Pharm. 2013, 10, 2948–2961. [Google Scholar] [CrossRef]
- Blandizzi, C.; Viscomi, G.S.; Scarpignato, C. Impact of crystal polymorphism on the systemic bioavailability of rifaximin, an antibiotic acting locally in the gastrointestinal tract, in healthy volunteers. Drug Des. Dev. Ther. 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Jaitak, V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 2019, 176, 268–291. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Scammeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Feliciano, A.S. Flavonoids: From Structure to Health Issues. Molecules 2017, 22, 477. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, R.; Zhang, Q.; Luo, Q.; Zeng, S.; Li, X.; Gong, X.; Li, Y.; Lu, L.; Hu, M.; et al. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol. 2019, 15, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, I.A.; Terekhov, R.P. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Russian Chem. Bul. 2019, 68, 2155–2162. [Google Scholar] [CrossRef]
- Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019, 166, 112066. [Google Scholar] [CrossRef]
- Ilyasov, I.; Beloborodov, V.; Antonov, D.; Dubrovskaya, A.; Terekhov, R.; Zhevlakova, A.; Saydasheva, A.; Evteev, V.; Selivanova, I. Flavonoids with Glutathione Antioxidant Synergy:Influence of Free Radicals Inflow. Antioxidants 2020, 9, 695. [Google Scholar] [CrossRef]
- Weidmann, A.E. Dihydroquercetin: More than Just an Impurity? Eur. J. Pharmacol. 2012, 684, 19–26. [Google Scholar] [CrossRef]
- Kolhir, V.K.; Bykov, V.A.; Baginskaja, A.I.; Sokolov, S.Y.; Glazova, N.G.; Leskova, T.E.; Sakovich, G.S.; Tjukavkina, N.A.; Kolesnik, Yu.A.; Rulenko, I.A. Antioxidant Activity of a Dihydroquercetin Isolated from Larix gmelinii (Rupr.) Rupr. Wood. Phytother. Res. 1996, 10, 478–482. [Google Scholar] [CrossRef]
- Kolkhir, V.K.; Tyukavkina, N.A.; Bykov, V.A.; Glyzin, V.I.; Arzamastsev, A.P.; Baginskaya, A.I.; Sokolov, S.Y.; Kolesnik, Y.A.; Glazova, N.G.; Rulenko, I.A.; et al. Dicvertin: A new antioxidant and capillary-protecting drug. Parm. Chem. J. 1995, 29, 657–660. [Google Scholar] [CrossRef]
- Inoue, T.; Saito, S.; Tanaka, M.; Yamakage, H.; Kusakabe, T.; Shimatsu, A.; Ihara, M.; Satoh-Asahara, N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 10031–10038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Saito, S.; Inoue, T.; Satoh-Asahara, N.; Ihara, M. Novel Therapeutic Potentials of Taxifolin for Amyloid-β-associated Neurodegenerative Diseases and Other Diseases: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2019, 20, 2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-L.; Lin, Y.-S.; Liu, K.-F.; Peng, W.-H.; Hsu, C.-M. Hepatoprotective Mechanisms of Taxifolin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Nutrients 2019, 11, 2655. [Google Scholar] [CrossRef] [Green Version]
- Teselkin, Y.O.; Babenkova, I.V.; Kolhir, V.K.; Baginskaya, A.I.; Tjukavkina, N.A.; Kolesnik, Yu.A.; Selivanova, I.A.; Eichholz, A.A. Dihydroquercetin as a means of antioxidative defence in rats with tetrachloromethane hepatitis. Phytother. Res. 2000, 14, 160–162. [Google Scholar] [CrossRef]
- Shubina, V.S.; Shatalin, Y.V. Skin Regeneration after Chemical Burn under the Effect of Taxifolin-Based Preparations. Byull. Eksp. Biol. 2012, 154, 152–157. [Google Scholar] [CrossRef]
- Oi, N.; Chen, H.; Kim, M.O.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin Suppresses UV-Induced Skin Carcinogenesis by Targeting EGFR and PI3K. Cancer Prev. Res. 2012, 5, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Terekhov, R.P.; Selivanova, I.A. Molecular modeling of the interaction of the dihydroquercetin and its metabolites with cyclooxygenase-2. Bull. Sib. Med. 2019, 18, 101–106. [Google Scholar] [CrossRef]
- Fedosova, N.F.; Alisievich, S.V.; Lyadov, K.V.; Romanova, E.P.; Rud’Ko, I.A.; Kubatiev, A.A. Mechanisms underlying diquertin-mediated regulation of neutrophil function in patients with non-insulin-dependent diabetes mellitus. Bull. Exp. Biol. Med. 2004, 137, 143–146. [Google Scholar] [CrossRef]
- Raj, U.; Varadwaj, P.K. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In Silico Discovery Using Virtual Screening and Molecular Docking Studies. Interdiscip. Sci. Comput. Life Sci. 2016, 8, 132–141. [Google Scholar] [CrossRef]
- Fischer, A.; Sellner, M.; Neranjan, S.; Smieško, M.; Lill, M.A. Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds. Int. J. Mol. Sci. 2020, 21, 3626. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, I.A.; Tyukavkina, N.A.; Kolesnik, Y.A.; Nesterov, V.N.; Kuleshova, L.N.; Khutoryanskii, V.A.; Bazhenov, B.N.; Saibotalov, M.Yu. Study of the crystalline structure of dihydroquercetin. Pharm. Chem. J. 1999, 33, 222–224. [Google Scholar] [CrossRef]
- Nifant’ev, E.E.; Koroteev, M.P.; Kaziev, G.Z.; Uminskii, A.A.; Grachev, A.A.; Men’shov, V.M.; Tsvetkov, Yu.E.; Nifant’ev, N.E.; Bel’skii, V.K.; Stash, A.I. On the problem of identification of the dihydroquercetin flavonoid. Russ. J. Gen. Chem. 2006, 76, 161–163. [Google Scholar] [CrossRef]
- Li, J.; Dong, J.; Ouyang, J.; Cui, J.; Chen, Y.; Wang, F.; Wang, J. Synthesis, characterization, solubilization, cytotoxicity and antioxidant activity of aminomethylated dihydroquercetin. MedChemComm 2017, 8, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, R.P.; Selivanova, I.A.; Tyukavkina, N.A.; Shylov, G.V.; Utenyshev, A.N.; Porozov, Y.B. Taxifolin tubes: Crystal engineering and characteristics. Acta Cryst. B 2019, 75, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Terekhov, R.; Selivanova, I. Fractal Aggregation of Dihydroquercetin after Lyophilization. J. Pharm. Innov. 2018, 13, 313–320. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Miroshnyk, I.; Mirza, S.; Urakova, I.U.; Hirsjarvi, S.; Makarov, V.G.; Heinamali, J.; Yliruusi, J.; Hitunen, R. Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography. Int. J. Pharm. 2009, 377, 148–152. [Google Scholar] [CrossRef]
- Jones, J.M.; Rollinson, A.N. Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. Thermochim. Acta 2013, 565, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, L.; Wang, L.; Zu, Y.; Wang, L.; Zhang, Y.; Zhao, X. Preparation and Characterization of Taxifolin Form II by Antisolvent Recrystallization. Chem. Eng. Tech. 2019, 42, 414–421. [Google Scholar] [CrossRef]
- Zavodnik, V.; Stash, A.; Tsirelson, V.; de Vries, R.; Feil, D. Electron density study of urea using TDS-corrected X-ray diffraction data: Qu-antitative comparison of experimental and theoretical results. Acta Cryst. B 1999, 55, 45–54. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Pindelska, E.; Sokal, A.; Kolodziejski, W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv. Drug Deliv. Rev. 2017, 117, 111–146. [Google Scholar] [CrossRef]
- Boldyreva, E.V.; Arkhipov, S.G.; Drebushchak, T.N.; Drebushchak, V.A.; Losev, E.A.; Matvienko, A.A.; Minkov, V.S.; Rychkov, D.A.; Seryotkin, Y.V.; Stare, J.; et al. Isoenergetic Polymorphism: The Puzzle of Tolazamide as a Case Study. Chem. Eur. J. 2015, 21, 15395–15404. [Google Scholar] [CrossRef]
- Karpinski, P.H. Polymorphism of Active Pharmaceutical Ingredients. Chem. Eng. Technol. 2006, 29, 233–237. [Google Scholar] [CrossRef]
- Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release 2017, 251, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, M.; Banik, R.M.; Haldar, C.; Maiti, P. Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing. J. Porous Mater. 2013, 20, 799–807. [Google Scholar] [CrossRef]
- Jang, J.Y.; Le, T.M.D.; Ko, J.H.; Ko, Y.-J.; Lee, S.M.; Kim, H.J.; Jeong, J.H.; Thambi, T.; Lee, D.S.; Son, S.U. Triple-, Double-, and Single-Shelled Hollow Spheres of Sulfonated Microporous Organic Network as Drug Delivery Materials. Chem. Mater. 2019, 31, 300–304. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds taxifolin microtubes and taxifolin microspheres are available from the authors. |
Sample | Shape | X101, µm | X501, µm | X901, µm |
---|---|---|---|---|
Raw taxifolin | irregular agglomerates | 2.16 | 11.73 | 46.90 |
Taxifolin microtubes | tubes | 4.18 | 23.80 | 214.00 |
Taxifolin microspheres | spheres | 2.22 | 49.00 | 190.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terekhov, R.P.; Selivanova, I.A.; Tyukavkina, N.A.; Ilyasov, I.R.; Zhevlakova, A.K.; Dzuban, A.V.; Bogdanov, A.G.; Davidovich, G.N.; Shylov, G.V.; Utenishev, A.N.; et al. Assembling the Puzzle of Taxifolin Polymorphism. Molecules 2020, 25, 5437. https://doi.org/10.3390/molecules25225437
Terekhov RP, Selivanova IA, Tyukavkina NA, Ilyasov IR, Zhevlakova AK, Dzuban AV, Bogdanov AG, Davidovich GN, Shylov GV, Utenishev AN, et al. Assembling the Puzzle of Taxifolin Polymorphism. Molecules. 2020; 25(22):5437. https://doi.org/10.3390/molecules25225437
Chicago/Turabian StyleTerekhov, Roman P., Irina A. Selivanova, Nonna A. Tyukavkina, Igor R. Ilyasov, Anastasiya K. Zhevlakova, Alexander V. Dzuban, Anatoliy G. Bogdanov, Georgiy N. Davidovich, Gennadii V. Shylov, Andrey N. Utenishev, and et al. 2020. "Assembling the Puzzle of Taxifolin Polymorphism" Molecules 25, no. 22: 5437. https://doi.org/10.3390/molecules25225437
APA StyleTerekhov, R. P., Selivanova, I. A., Tyukavkina, N. A., Ilyasov, I. R., Zhevlakova, A. K., Dzuban, A. V., Bogdanov, A. G., Davidovich, G. N., Shylov, G. V., Utenishev, A. N., Kovalev, D. Y., Fenin, A. A., & Kabluchko, T. G. (2020). Assembling the Puzzle of Taxifolin Polymorphism. Molecules, 25(22), 5437. https://doi.org/10.3390/molecules25225437