New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems
Abstract
:1. Introduction
2. Results and Discussion
- Preparation of PG and finding the optimal conditions for obtaining the grafted copolymer with maximum grafting yield.
- Betainization reaction of PG with the highest grafting yield in the presence of sodium chloroacetate (Figure 1).
2.1. Optimal Conditions for the Preparation of PG
2.1.1. Influence of Initiator Concentration
2.1.2. Influence of Monomer Concentration
2.1.3. Influence of Gellan Concentration
2.1.4. Influence of Reaction Time
2.1.5. Influence of Temperature
- (1)
- an increase in the production of free radicals resulting from thermal decomposition of initiator leading to increase in the number of the active sites on the polysaccharide chains;
- (2)
- a decrease of reaction medium viscosity;
- (3)
- fast diffusion of the monomer toward the active sites from the polysaccharide backbone;
- (4)
2.2. Kinetics and Mechanism of graft Copolymerization
2.3. Synthesis of Copolymer Carrying Betaine Structure
2.4. Characterization of PG and PGB1
2.4.1. 1H-NMR Spectroscopy
2.4.2. FTIR Spectroscopy
2.4.3. Surface Morphology Analysis
- (1)
- the presence of nitrogen belonging only to NVI on the surface of PG and PGB1 copolymers;
- (2)
- increase of C% value of the PG molecule compared to that from GLL indicating the presence of PNVI in the PG structure;
- (3)
- increase of C% and O% values, as well as the decrease of N% values, of the PGB1 copolymer compared those from the PG copolymer due to the formation of betaine units.
2.4.4. X-Ray Diffractions Analysis (XRD)
2.4.5. Thermogravimetric Studies
2.5. Immobilization and Drug Release
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Grafted Polymers (PG)
3.3. Estimation of Grafting Parameters
3.4. Synthesis of Grafted Polymer Carrying Betaine Units
3.5. Infrared Spectroscopy
3.6. 1H-NMR Analysis
3.7. Scanning Electron Microscopy (SEM)
3.8. X-Ray Diffraction Analysis (XRD)
3.9. Thermogravimetric Analysis (TG/DTG)
3.10. Immobilization and Drug Release
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garcia-Valdez, O.; Champagne, P.; Cunningham, M.F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog. Polym. Sci. 2018, 76, 151–173. [Google Scholar] [CrossRef]
- Cassanelli, M.; Prosapio, V.; Norton, I.; Mills, T. Acidified/basified gellan gum gels: The role of the structure in drying/rehydration mechanisms. Food Hydrocoll. 2018, 82, 346–354. [Google Scholar] [CrossRef]
- Osmałek, T.; Froelich, A.; Tasarek, S. Application of gellan gum in pharmacy and medicine. Int. J. Pharm. 2014, 466, 328–340. [Google Scholar] [CrossRef]
- Chang, S.J.; Huang, Y.-T.; Yang, S.-C.; Kuo, S.M.; Lee, M.-W. In vitro properties of gellan gum sponge as the dental filling to maintain alveolar space. Carbohydr. Polym. 2012, 88, 684–689. [Google Scholar] [CrossRef]
- Pandey, V.S.; Verma, S.K.; Yadav, M.; Behari, K. Studies on graft copolymerization of gellan gum with N,N-dimethylacrylamide by the redox system. Int. J. Biol. Macromol. 2014, 70, 108–115. [Google Scholar] [CrossRef]
- Giri, T.K.; Verma, P.; Tripathi, D.K. Grafting of vinyl monomer onto gellan gum using microwave: Synthesis and characterization of grafted copolymer. Adv. Compos. Mater. 2014, 24, 531–543. [Google Scholar] [CrossRef]
- Vijan, V.; Kaity, S.; Biswas, S.; Isaac, J.; Ghosh, A. Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr. Polym. 2012, 90, 496–506. [Google Scholar] [CrossRef]
- Nandi, G.; Patra, P.; Priyadarshini, R.; Kaity, S.; Ghosh, L.K. Synthesis, characterization and evaluation of methacrylamide grafted gellan as sustained release tablet matrix. Int. J. Biol. Macromol. 2015, 72, 965–974. [Google Scholar] [CrossRef]
- Karthika, J.S.; Vishalakshi, B. Microwave-Assisted Synthesis and Characterization of Poly(2-(dimethylamino)ethyl methacrylate) Grafted Gellan Gum. Int. J. Polym. Anal. Charact. 2014, 19, 709–720. [Google Scholar] [CrossRef]
- Verma, S.K.; Pandey, V.S.; Behari, K. Gellan gum-g-N-vinyl-2-pyrrolidone: Synthesis, swelling, metal ion uptake and flocculation behavior. Int. J. Biol. Macromol. 2015, 72, 1292–1300. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Mohamed, R.R.; Sabaa, M.W. Synthesis of novel grafted hyaluronic acid with antitumor activity. Carbohydr. Polym. 2018, 189, 107–114. [Google Scholar] [CrossRef]
- Caner, H.; Yilmaz, E.; Yilmaz, O. Synthesis, characterization and antibacterial activity of poly(N-vinylimidazole) grafted chitosan. Carbohydr. Polym. 2007, 69, 318–325. [Google Scholar] [CrossRef]
- Unal, H.I.; Inegollu, C.; Sanli, O. Graft copolymerization of N-vinylimidazole on poly(ethylene tetephthalate) fibers in a swelling solvent using azobisisobutyronitrile as initiator. Turk. J. Chem. 2003, 27, 403–415. [Google Scholar]
- Abu Elella, M.H.; Mohamed, R.R.; Elhafeez, E.A.; Sabaa, M.W. Synthesis of novel biodegradable antibacterial grafted xanthan gum. Carbohydr. Polym. 2017, 173, 305–311. [Google Scholar] [CrossRef]
- El-Hamshary, H.; Fouda, M.M.; Moydeen, M.; El-Newehy, M.H.; Al-Deyab, S.S.; Abdel-Megeed, A. Synthesis and antibacterial of carboxymethyl starch-grafted poly(vinyl imidazole) against some plant pathogens. Int. J. Biol. Macromol. 2015, 72, 1466–1472. [Google Scholar] [CrossRef]
- Anderson, E.B.; Long, T.E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 2010, 51, 2447–2454. [Google Scholar] [CrossRef] [Green Version]
- Pineda-Contreras, A.; Hernández-Madrigal, J.V.; Vázquez-Vuelvas, O.F.; Fomine, S. Synthesis and ROMP of new sulfobetaine and carboxybetaine norbornene. e-Polymers 2016, 16, 181–188. [Google Scholar] [CrossRef]
- Vasiliu, S.; Neagu, V.; Popa, M.; Luca, C. Materials with special properties based on polybetaines. Mat. Plast. 2008, 45, 177–183. [Google Scholar]
- Barboiu, V.; Holerca, M.N.; Streba, E.; Luca, C. Reactions on polymers with amine groups. 3. Description of the addition reaction of pyridine and imidazole compounds with alpha, beta-unsaturated monocarboxylic acids. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 261–270. [Google Scholar] [CrossRef]
- Gonsior, N.; Mohr, F.; Ritter, H. Synthesis of mesomeric betaine compounds with imidazolium-enolate structure. Beilstein J. Org. Chem. 2012, 8, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Laschewsky, A. Structures and Synthesis of Zwitterionic Polymers. Polymer 2014, 6, 1544–1601. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, J.; Qiu, M.; He, C. Antifouling PVDF membrane grafted with zwitterionic poly(lysine methacrylamide) brushes. RSC Adv. 2016, 6, 61434–61442. [Google Scholar] [CrossRef]
- Li, M.; Zhuang, B.; Yu, J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem. Asian J. 2020, 15, 2060–2075. [Google Scholar] [CrossRef]
- Blackman, L.D.; Gunatillake, P.A.; Cass, P.; Locock, K.E.S. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 2019, 48, 757–770. [Google Scholar] [CrossRef]
- Tarannum, N.; Singh, M. Advances in Synthesis and Applications of Sulfo and Carbo Analogues of Polybetaines: A Review. Rev. Adv. Sci. Eng. 2013, 2, 90–111. [Google Scholar] [CrossRef]
- Didukh, A.G.; Koizhaiganova, R.B.; Khamitzhanova, G.; Bimendina, L.A.; Kudaibergenov, S.E. Stimuli-sensitive behaviour of novel betaine-type polyampholytes. Polym. Int. 2003, 52, 883–891. [Google Scholar] [CrossRef]
- Tada, S.; Inaba, C.; Mizukami, K.; Fujishita, S.; Gemmei-Ide, M.; Kitano, H.; Mochizuki, A.; Tanaka, M.; Matsunaga, T. Anti-Biofouling Properties of Polymers with a Carboxybetaine Moiety. Macromol. Biosci. 2008, 9, 63–70. [Google Scholar] [CrossRef]
- Lewis, A.L. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf. B Biointerfaces 2000, 18, 261–275. [Google Scholar] [CrossRef]
- West, S.L.; Salvage, J.P.; Lobb, E.J.; Armes, S.P.; Billingham, N.C.; Lewis, A.L.; Hanlon, G.W.; Lloyd, A.W. The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 2004, 25, 1195–1204. [Google Scholar] [CrossRef]
- Luca, C.; Mihailescu, S.; Popa, M. Polymers containing quaternary ammonium groups based on poly(N-vinylimidazole). Eur. Polym. J. 2002, 38, 1501–1507. [Google Scholar] [CrossRef]
- Racovita, S.; Vasiliu, S.; Neagu, V. Solution properties of three polyzwitterions based on poly (N-vinylimidazole). Iran. Polym. J. 2010, 19, 333–341. [Google Scholar]
- Sabaa, M.W.; Mohamed, N.A.; Mohamed, R.R.; Khalil, N.M.; El Latif, S.M.A. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr. Polym. 2010, 79, 998–1005. [Google Scholar] [CrossRef]
- Bamford, C.; Schofield, E. Non-classical free-radical polymerization: Degradative addition to monomer in the polymerization of 1-vinylimidazole. Polymer 1981, 22, 1227–1235. [Google Scholar] [CrossRef]
- Behari, K.; Pandey, P.; Kumar, R.; Taunk, K. Graft copolymerization of acrylamide onto xanthan gum. Carbohydr. Polym. 2001, 46, 185–189. [Google Scholar] [CrossRef]
- Badwaik, H.; Sakure, K.; Alexander, A.; Ajazuddin Dhongade, H.; Tripathi, D.K. Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int. J. Biol. Macromol. 2016, 85, 361–369. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Maldas, D. Graft copolymerization onto cellulosics. Prog. Polym. Sci. 1984, 10, 171–270. [Google Scholar] [CrossRef]
- Taghizadeh, M.T.; Khosravy, M. Kinetics and mechanism of graft copolymerization of vinyl monomers (acrylamide, acrylic acid and methacrylate) onto starch by potassium dichromate as redox initiator. Iran. Polym. J. 2003, 12, 497–505. [Google Scholar]
- Sirirat, T.; Vatanatham, T.; Hansupalak, N.; Rempel, G.L.; Arayapranee, W. Kinetics and modeling of methyl methacrylate graft copolymerization in the presence of natural rubber latex. Korean J. Chem. Eng. 2015, 32, 980–992. [Google Scholar] [CrossRef]
- Mostafa, K.; Samarkandy, A.R.; El-Sanabary, A. Grafting onto carbohydrate polymer using novel potassium persulfate/tetramethylethylene diamine redox system for initiating grafting. Adv. Polym. Technol. 2011, 30, 138–149. [Google Scholar] [CrossRef]
- Neagu, V.; Vasiliu, S.; Racovita, S. Adsorption studies of some inorganic and organic salts on new zwitterionic ion exchangers with carboxybetaine moieties. Chem. Eng. J. 2010, 162, 965–973. [Google Scholar] [CrossRef]
- Talu, M.; Demiroğlu, E.U.; Yurdakul, Ş.; Badoğlu, S. FTIR, Raman and NMR spectroscopic and DFT theoretical studies on poly(N-vinylimidazole). Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2015, 134, 267–275. [Google Scholar] [CrossRef]
- Coutinho, D.F.; Sant, S.V.; Shin, H.; Oliveira, J.T.; Gomes, M.E.; Neves, N.M.; Khademhosseini, A.; Reis, R.L. Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 2010, 31, 7494–7502. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhao, X.; Fang, S. Characterization, Antimicrobial Properties and Coatings Application of Gellan Gum Oxidized with Hydrogen Peroxide. Foods 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Vasiliu, S.; Bunia, I.; Racovita, S.; Neagu, V. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equilibrium and thermodynamic studies. Carbohydr. Polym. 2011, 85, 376–387. [Google Scholar] [CrossRef]
- Higuchi, W.I. Diffusional Models Useful in Biopharmaceutics. J. Pharm. Sci. 1967, 56, 315–324. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Sepulveda, P.; Binner, J.G.P. Persulfate−Amine Initiation Systems for Gelcasting of Ceramic Foams. Chem. Mater. 2001, 13, 4065–4070. [Google Scholar] [CrossRef]
- Constantin, M.; Mihalcea, I.; Oanea, I.; Harabagiu, V.; Fundueanu, G. Studies on graft copolymerization of 3-acrylamidopropyl trimethylammonium chloride on pullulan. Carbohydr. Polym. 2011, 84, 926–932. [Google Scholar] [CrossRef]
- Srivastava, A.; Behari, K. Studies on Graft Copolymerization of N-Vinyl-2-pyrrolidone on to Carboxymethylcellulose (Sodium Salt) and Metal Ion Sorption Behavior. J. Macromol. Sci. Part A 2006, 43, 1065–1081. [Google Scholar] [CrossRef]
- Clark, W.M.; Lubs, H.A. The Colorimetric Determination of Hydrogen ion Concentration and its Applications in Bacteriology PART I1. J. Bacteriol. 1917, 2, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, S.P.L. Enzyme studies II. On the measurement and the importance of hydrogen ion concentrationduring enzymatic processes. Biochem. Z. 1909, 21, 131–200. [Google Scholar]
Sample Codes | Decomposition Temperature | Weight Loss (%) | Residual Mass (%) | ||
---|---|---|---|---|---|
Ti (°C) | Tm (°C) | Tf (°C) | |||
PNVI | 406 | 433 | 519 | 47.3 | 3.9 |
GLL | 241 | 250 | 322 | 45.0 | 16.1 |
PG | 429 | 454 | 548 | 15.9 | 53.3 |
PGB1 | 256 | 278 | 410 | 40.9 | 31.2 |
Sample Codes | Higuchi Model | Korsmeyer-Peppas Model | |||
---|---|---|---|---|---|
kH (h−1/2) | R2 | kr (min−n) | n | R2 | |
PG | 0.249 | 0.993 | 0.053 | 0.377 | 0.992 |
PGB1 | 0.236 | 0.990 | 0.023 | 0.550 | 0.991 |
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racovita, S.; Baranov, N.; Macsim, A.M.; Lionte, C.; Cheptea, C.; Sunel, V.; Popa, M.; Vasiliu, S.; Desbrieres, J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules 2020, 25, 5451. https://doi.org/10.3390/molecules25225451
Racovita S, Baranov N, Macsim AM, Lionte C, Cheptea C, Sunel V, Popa M, Vasiliu S, Desbrieres J. New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules. 2020; 25(22):5451. https://doi.org/10.3390/molecules25225451
Chicago/Turabian StyleRacovita, Stefania, Nicolae Baranov, Ana Maria Macsim, Catalina Lionte, Corina Cheptea, Valeriu Sunel, Marcel Popa, Silvia Vasiliu, and Jacques Desbrieres. 2020. "New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems" Molecules 25, no. 22: 5451. https://doi.org/10.3390/molecules25225451
APA StyleRacovita, S., Baranov, N., Macsim, A. M., Lionte, C., Cheptea, C., Sunel, V., Popa, M., Vasiliu, S., & Desbrieres, J. (2020). New Grafted Copolymers Carrying Betaine Units Based on Gellan and N-Vinylimidazole as Precursors for Design of Drug Delivery Systems. Molecules, 25(22), 5451. https://doi.org/10.3390/molecules25225451