Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties
Abstract
:1. Introduction
- high enthalpy of fusion;
- high thermal conductivity;
- narrow phase-change transition temperature;
- high thermal stability;
- low toxicity;
- low flammability.
- overview on the polymorphism of triglycerides and known crystalline arrangements;
- summary of triglycerides’ thermal properties and considerations on trends correlating them to the chemical structures;
- overview of modelling methods employed to predict the thermal properties;
- evaluation of studies conducted on triglycerides as PCMs;
- conclusions and outlook for thermal energy storage applications.
2. Polymorphism of Triglycerides
- form: it appears as an amorphous mass of small crystals with molecules organized in random degrees of rotation around the chain axis but at constant distances [21,22]. For simple triglycerides, this corresponds to hexagonal subcells [23]. The phase is similar to a “colloidal” glass [11]. It is thermodynamically unstable, but kinetically favorable; therefore, it will be the prevalent phase in fast heating-cooling conditions. This form usually exhibits no alternation in physical properties for odd and even number of carbon atoms. Only one form exists for a given compound [15,24]. Over time, the phase will crystallize irreversibly to form the phase.
- ′ form: it is usually consisting of spherulitic crystals [21,22]. For simple triglycerides, this corresponds to orthorombic subcells [23]. It is thermodynamically unstable with melting points between those of the and phases. Mixtures, asymmetrical or unsaturated triglycerides are more prone to presenting ′ phases. As reported by Hoerr et al. [14] the ′ phase is highly influenced by the presence of impurities, as percentages over 2–3% can block completely its formation. Different variations of the form can exist for given compounds [15,24]. This form is the most difficult to characterize, as it is the most unstable phase and will spontaneously and irreversibly evolve into phase over time.
- form: it is easily detected as it forms needle-like crystals with the molecules locked in a definite position, and the hydrocarbon chains tilted at an angle of circa 65 C to the end-group planes. For simple triglycerides, this corresponds to triclinic subcells [23]. It is the most thermodynamically stable form and as such will be favoured in slow heating-cooling conditions. The phase shows alternation between odd and even number of carbon atoms in a series, and more than one form for given compound are reported [15,24]. Due to their highly ordered state, crystals cannot be spontaneously formed from an , ′ or melt in the absence of thermal history, but will rather grow from existing or ′ crystals, or directly from a melt if a thermal history or seed crystals are present.
3. Thermal Properties of Triglycerides
3.1. Saturated Symmetrical Triglycerides (SST)
3.2. Unsaturated Symmetrical Triglycerides (UST)
3.3. Saturated Asymmetrical Triglycerides (SAT)
3.4. Heat Capacity and Thermal Conductivity
3.5. Thermal Degradation
4. Modelling and Prediction of Thermal Properties
5. Triglycerides as PCMs
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CCL | 1,2-dicaprin-3-laurin |
CLC | 1,3-dicaprin-2-laurin |
CMM | 1-caprin-2,3-dimyristin |
Specific heat [J/(g·K)] | |
DSC | Differential Scanning Calorimetry |
GC method | Group contribution method |
LCL | 1,3-dilaurin-2-caprin |
LHS | Latent Heat Storage |
LPP | 1-laurin-2,3-dipalmitin |
MMP | 1,2-dimyristin-3-palmitin |
MPM | 1,3-dimyristin-2-palmitin |
PCM | Phase Change Material |
PML | 1-palmitin-2-myristin-3-laurin |
PMP | 1,3-dipalmitin-2-myristin |
PPS | 1,2-dipalmitin-3-stearin |
PSP | 1,3-dipalmitin-2-stearin |
SAT | Saturated Asymmetrical Triglycerides |
SBB | 1-stearin-2,3-dibehenin |
SCP | 1-stearin-2-caprin-3-palmitin |
SMP | 1-stearin-2-myristin-3-palmitin |
SNSF | Swiss National Science Foundation |
SPS | 1,3-distearin-2-palmitin |
SST | Saturated Symmetrical Triglycerides |
TES | Thermal Energy Storage |
UST | Unsaturated Symmetrical Triglycerides |
XRD | X-Ray Diffraction |
Kinetically stable polymorphic phase | |
′ | Metastable polymorphic phase |
Thermodynamically stable polymorphic phase | |
Glass-like polymorphic phase, today intended same as | |
Thermal conductivity [W/(m·K)] | |
ΔH | Gravimetric enthalpy of fusion [J/g] |
Appendix A. Chemical Structures
References
- European Commission, EU. Energy 2020—A Strategy for Competitive, Sustainable and Secure Energy. 2010. Available online: https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2020-energy-strategy (accessed on 4 July 2019).
- European Commission, EU. Energy Roadmap 2050. 2012. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2012_energy_roadmap_2050_en_0.pdf (accessed on 4 July 2019).
- International Energy Agency, IEA World Energy Balances 2018: Overview. 2018. Available online: https://webstore.iea.org/world-energy-balances-2018-overview (accessed on 4 July 2019).
- International Energy Agency, IEA Technology Collaboration Programmes: Highlights and Outcomes. 2016. Available online: https://webstore.iea.org/technology-collaboration-programmes (accessed on 4 July 2019).
- Pielichowska, K.; Pielichowski, K.T. Phase Change Materials for Thermal Energy Storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540685562. [Google Scholar]
- Kenar, J.A. The use of lipids as phase change materials for thermal energy storage. Lip. Technol. 2014, 26, 154–156. [Google Scholar] [CrossRef]
- Gunstone, F.; Harwood, J.; Dijkstra, A. The Lipid Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Duffy, P. XVIII-On certain Isomeric Transformations of Fats. J. Chem. Soc. 1853, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Grüntzig, W. Uber die Schmelzpunktsalternation der hoheren, einsaurigen Triglyzeride. Z. Anorg. Chem. 1939, 240, 313–321. [Google Scholar] [CrossRef]
- Malkin, T. The Polymorphism of Glycerides. J. Chem. Soc. 1940, 103, 1–50. [Google Scholar] [CrossRef]
- Ferguson, R.H.; Lutton, E.S. The Polymorphic forms or phases of triglyceride fats. Symp. Mol. Struct. Fats Oils 1941, 355–384. [Google Scholar] [CrossRef]
- Clarkson, C.E.; Malkin, T. An X-Ray and Thermal Examination of the Glycerides. Part IX. The Polymorphism of Simple Triglycerides. J. Chem. Soc. 1948, 985–987. [Google Scholar] [CrossRef]
- Hoerr, C.W.; Paulicka, F.R. The Role of X-Ray Diffraction in Studies of the Crystallography of Monoacid Saturated Triglycerides 1. J. Am. Oil Chem. Soc. 1968, 45, 793–797. [Google Scholar] [CrossRef]
- Lutton, E.S.; Fehl, A.J. The Polymorphism of Odd and Even Saturated Single Acid Triglycerides, C8-C22. Lipids 1969, 5, 90–99. [Google Scholar] [CrossRef]
- Hagemann, J.W.; Tallent, W.H.; Kolb, K.E. Differential Scanning Calorimetry of Single Acid Triglycerides: Effect of Chain Length and Unsaturation. J. Am. Oil Chem. Soc. 1972, 49, 118–123. [Google Scholar] [CrossRef]
- Hale, J.E.; Schroeder, F. Phase behavior of triolein and tripalmitin detected by differential scanning calorimetry. Lipids 1981, 16, 805–809. [Google Scholar] [CrossRef]
- Hagemann, J.W.; Rothfus, J.A. Polymorphism and Transformation Energetics of Saturated Monoacid Triglycerides from Differential Scanning Calorimetry and Theoretical Modeling. J. Am. Oil Chem. Soc. 1983, 60, 1123–1131. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The Reflection of X-rays by Crystals. Proc. R. Soc. Lond. 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Lutton, E.S. The Polymorphism of Tristearin and Some of its Homologs. J. Am. Oil Chem. Soc. 1945, 67, 524–527. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Ping, L.; Sharifudin, M.; Hasmadi, M.; Mansoor, A.H.; Lee, J.S.; Noorakmar, B.W.; Amir, H.M.S.; Jinap, S.; Mohd Omar, A.K.; et al. Thermal properties, triglycerides and crystal morphology of bambangan (Mangifera pajang) kernel fat and palm stearin blends as cocoa butter alternatives. LWT Food Sci. Technol. 2019, 107, 64–71. [Google Scholar] [CrossRef]
- Anankanbil, S.; Larsen, M.K.; Weisbjerg, M.R.; Wiking, L. Effects of variation in fatty acids and triglyceride composition on melting behavior in milk fat. Dairy Chem. Phys. 2018, 71, 4–9. [Google Scholar]
- Hernqvist, L. Polymorphism of Triglycerides a Crystallographic Review. Food Struct. 1990, 9, 39–44. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1216&context=foodmicrostructure (accessed on 1 July 2019).
- Malkin, T. Alternation in properties of long chain carbon compounds. Nature 1931, 127, 126–127. [Google Scholar] [CrossRef]
- Suppes, G.J.; Goff, M.J.; Lopes, S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 2003, 58, 1751–1763. [Google Scholar] [CrossRef]
- Ferrari, C.; Angiuli, M.; Tombari, E.; Righetti, M.C.; Matteoli, E.; Salvetti, G. Promoting calorimetry for olive oil authentication. Thermochim. Acta 2007, 459, 58–63. [Google Scholar] [CrossRef]
- Wesdorp, L.H. Liquid Multiple Solid Phase Equilibria in Fats—Theory and Experiments. 1990. Available online: https://repository.tudelft.nl/islandora/object/uuid:588b65b8-762d-4b21-8fe7-871ca18c589c?collection=research (accessed on 20 June 2019).
- Zeberg-Mikkelsen, C.K.; Stenby, E.H. Predicting the melting points and the enthalpies of fusion of saturated triglycerides by a group contribution method. Thermochim. Acta 2007, 459, 58–63. [Google Scholar] [CrossRef]
- De Jong, S.; Van Soest, T.C. Crystal Structures and Melting Points of Saturated Triglycerides in the beta-2 Phase. Acta Crystallogr. Sect. B 1978, 34, 157–158. [Google Scholar] [CrossRef]
- Wheeler, D.H.; Riemenschneider, R.W.; Sando, C.E. Triolein and Trilinolein. J. Biol. Chem. 1940, 132, 689–699. Available online: https://drum.lib.umd.edu/bitstream/handle/1903/17980/DP71169.pdf?sequence=1 (accessed on 28 June 2019).
- Daubert, B.F.; Baldwin, A.R. Unsaturated Synthetic Glycerides. VII. Preparation and Properties of Synthetic 1-Monoglycerides and Simple Triglycerides of Linoleic and Linolenic Acids. J. Am. Chem. Soc. 1944, 66, 997–1000. [Google Scholar] [CrossRef]
- Nusantoro, B.P.; Yanty, N.A.M.; Van De Walle, D.; Hidayat, C.; Danthine, S.; Dewettinck, K. Calculation procedure for formulating lauric and palmitic fat blends based on the grouping of triacylglycerol melting points. Gras. Y Aceites 2017, 68, 1–12. [Google Scholar] [CrossRef]
- Marangoni, A.G.; Wesdorp, L.H. Structure and Properties of Fat Crystal Networks, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439887622. [Google Scholar]
- Baur, F.J. Crystalline Triacetin. Notes 1958, 58, 380. [Google Scholar] [CrossRef]
- Andrews, P.C.; Fraser, B.H.; Junk, P.C.; Massi, M.; Perlmutter, P.; Thienthong, N.; Wijesundera, C. Large-scale synthesis of both symmetrical and unsymmetrical triacylglycerols containing docosahexaenoic acid. Tetrahedron 2008, 64, 9197–9202. [Google Scholar] [CrossRef]
- Alfutimie, A.; Al-janabi, N.; Curtis, R.; Tiddy, G.J.T. The Effect of monoglycerides on the crystallisation of triglyceride. Col. Surf. Physicochem. Eng. Asp. 2016, 494, 170–179. [Google Scholar] [CrossRef]
- Himawan, C.; MacNaughtan, W.; Farhat, I.A.; Stapley, A.G.F. Polymorphic occurrence and crystallization rates of tristearin/tripalmitin mixtures under non-isothermal conditions. Eur. J. Lipid Sci. Technol. 2007, 109, 49–60. [Google Scholar] [CrossRef]
- MacNaughtan, W.; Farhat, I.A.; Himawan, C.; Starov, V.M.; Stapley, A.G.F. A differential scanning calorimetry study of the crystallization kinetics of tristearin-tripalmitin mixtures. J. Am. Oil Chem. Soc. 2006, 83, 1–9. [Google Scholar] [CrossRef]
- Feldman, D.; Shapiro, M.; Banu, D.; Fuks, C.J. Fatty Acids and Their Mixtures as Phase Change Materials for Thermal Energy Storage. Sol. Energy Mater. 1989, 18, 201–216. [Google Scholar] [CrossRef]
- Sari, A.; Bicer, A.; Karaipekli, A.; Alkan, C.; Karadag, A. Synthesis, thermal energy storage properties and thermal reliability of some fatty acid esters with glycerol as novel solid-liquid phase change materials. Sol. Energy Mater. Sol. Cells 2010, 94, 1711–1715. [Google Scholar] [CrossRef]
- Knothe, G.; Dunn, R.O. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. J. Am. Oil Chem. Soc. 2009, 86, 843–856. [Google Scholar] [CrossRef]
- Spix, L.; Boese, R. The Melting Point Behaviour in the Short -Chain nAlkan-1-ols. Acta Cryst. Sec. A 2007, 63, 203. [Google Scholar] [CrossRef] [Green Version]
- Boese, R.; Weiss, H.C.; Dieter Bläser, D. The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K. Angewand. Chem. 1999, 38, 988–992. [Google Scholar] [CrossRef]
- Ravotti, R.; Fellmann, O.; Lardon, N.; Fischer, L.J.; Stamatiou, A.; Wortlischek, J. Analysis of Bio-Based Fatty Esters PCM’s Thermal Properties and Investigation of Trends in Relation to Chemical Structures. Appl. Sci. 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- De Jong, S.; Van Soest, T.C.; Van Schaick, M.A. Crystal Structures and Melting Points of Saturated Triglycerides in the Beta Phase. J. Am. Oil Chem. Soc. 1991, 68, 371–378. [Google Scholar] [CrossRef]
- Bogatishcheva, N.S.; Faizullin, M.Z.; Popov, A.P.; Nikitin, E.D. Critical properties, heat capacities, and thermal diffusivities of four saturated triglycerides. J. Chem. Thermodyn. 2017, 113, 308–314. [Google Scholar] [CrossRef]
- Morad, N.A.; Idrees, M.; Hasan, A.A. Improved conditions for measurement of the specific heat capacities of pure triglycerides by differential scanning calorimetry. J. Therm. Anal. 1995, 44, 823–835. [Google Scholar] [CrossRef]
- Zábranský, M.; Kolská, Z.; Růžička, V.; Domalski, E.S. Heat capacity of liquids: Critical review and recommended values. Supplement ii. J. Phys. Chem. Ref. Data 2010, 39, 3–404. [Google Scholar] [CrossRef]
- Eiteman, M.A.; Goodrum, J.W. Heat capacity of the triglycerides: Tricaproin, tricaprylin and tricaprin. J. Am. Oil Chem. Soc. 1994, 71, 549–550. [Google Scholar] [CrossRef]
- Ravotti, R.; Fellmann, O.; Lardon, N.; Fischer, L.J.; Stamatiou, A.; Wortlischek, J. Synthesis and Investigation of Thermal Properties of Highly Pure Carboxylic Fatty Esters to Be Used as PCM. Appl. Sci. 2018, 8, 1069. [Google Scholar] [CrossRef] [Green Version]
- Ravotti, R.; Fellmann, O.; Fischer, L.J.; Wortlischek, J.; Stamatiou, A. Investigation of the Thermal Properties of Diesters from Methanol, 1-Pentanol, and 1-Decanol as Sustainable Phase Change Materials. Materials 2020, 13, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchio, S.; Campanella, L.; Nuccilli, A.; Tomassetti, M. Kinetic Study of Thermal Breakdown of Triglycerides Contained in Extra-Virgin Olive Oil. J. Therm. Anal. Calorim. 2008, 91, 51–56. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, S.G.; Chang, S.J.; Kang, Y.; Wi, S.; Kim, S. Thermal Performance Evaluation of Fatty Acid Ester and Paraffin Based Mixed SSPCMs Using Exfoliated Graphite Nanoplatelets (xGnP). Appl. Sci. 2016, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Nawar, W. Thermal Degradation of Lipids—A review. J. Agric. Food Chem. 1969, 17, 18–21. [Google Scholar] [CrossRef]
- Crossley, A.; Heyes, T.D.; Hudson, B.J.F. The effect of heat on pure triglycerides. J. Am. Oil Chem. Soc. 1962, 39, 9–14. [Google Scholar] [CrossRef]
- Noble, A.C.; Buziassy, C.; Nawar, W.W. Thermal hydrolysis of some natural fats. Lipids 1967, 2, 435–436. [Google Scholar] [CrossRef]
- Moorthy, A.S.; Liu, R.; Mazzanti, G.; Wesdorp, L.H. Estimating Thermodynamic Properties of Pure Triglyceride Systems Using the Triglyceride Property Calculator. J. Am. Oil Chem. Soc. 2017, 94, 187–199. [Google Scholar] [CrossRef]
- King, M.; Garner, E.W. The Melting Points of Long-chain Carbon Compounds. J. Chem. Soc. 1936, 296, 1368–1372. [Google Scholar] [CrossRef]
- Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 1697–1710. [Google Scholar] [CrossRef]
- Chandrasekhar, I.; van Gunsteren, W.F. A comparison of the potential energy parameters of aliphatic alkanes: Molecular dynamics simulations of triacylglycerols in the alpha phase. Eur. Biophys. J. 2002, 31, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Sum, A.K.; Biddy, M.J.; de Pablo, J.J.; Tupy, M.J. Predictive Molecular Model for the Thermodynamic and Transport Properties of Triacylglycerols. J. Phys. Chem. B 2003, 107, 14443–14451. [Google Scholar] [CrossRef]
- Pink, D.A.B.; Hanna, C.B.; Sandt, C.; MacDonald, A.J.; MacEachern, R.; Corkery, R.; Rousseau, D. Modeling the solid-liquid phase transition in saturated triglycerides. J. Chem. Phys. 2010, 132, 054502. [Google Scholar] [CrossRef] [Green Version]
- Pizzirusso, A.; Brasiello, A.; De Nicola, A.; Marangoni, A.G.; Milano, G. Coarse-grained modelling of triglyceride crystallisation: A molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations. J. Phys. D 2015, 48, 494004. [Google Scholar] [CrossRef]
- Tascini, A.S.; Noro, M.G.; Chen, R.; Seddon, J.M.; Bresme, F. Understanding the interactions between sebum triglycerides and water: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2018, 20, 1848–1860. [Google Scholar] [CrossRef]
- Phan, T.T.; Harwell, J.H.; Sabatini, D.A. Effects of Triglyceride Molecular Structure on Optimum Formulation of Surfactant-Oil-Water Systems. J. Surfact Deterg. 2010, 13, 189–194. [Google Scholar] [CrossRef]
- Henneré, G.; Prognon, P.; Brion, F.; Nicolis, I. Molecular dynamics study of a phospholipid monolayer at a water/triglyceride interface: Towards lipid emulsion modelling. Chem. Phys. Lip. 2009, 157, 86–93. [Google Scholar] [CrossRef]
- Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl. Energy 2018, 220, 242–273. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Alnefaie, K.A. Assessment of thermal performance of PCM in latent heat storage system for different applications. Sol. Energy 2019, 177, 317–323. [Google Scholar] [CrossRef]
- Pereira da Cunha, J.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials—A review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Akgüna, M.; Aydın, O.; Kaygusuz, K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers. Manag. 2007, 48, 669–678. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Sanjayan, J.; Wang, X.; Alam, M.; Wilson, J. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl. Energy 2015, 157, 85–94. [Google Scholar] [CrossRef]
- Gunasekara, S.N.; Stalin, J.; Marçal, M.; Delubac, R.; Karabanova, A.; Chiu, J.N.; Martin, V. Erythritol, glycerol, their blends, and olive oil, as sustainable phase change materials. Energy Proc. 2017, 135, 249–262. [Google Scholar] [CrossRef]
- Bunjes, H.; Westesen, K.; Koch, M.H.J. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 1996, 129, 159–173. [Google Scholar] [CrossRef]
- Xiao, M.; Feng, B.; Gong, K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers. Manag. 2002, 43, 103–108. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sari, A.; Kaygusuz, K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 2007, 32, 2201–2210. [Google Scholar] [CrossRef]
- Ling, Z.; Chen, J.; Xu, T.; Fang, X.; Gao, X.; Zhang, Z. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers. Manag. 2015, 102, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Jeong, S.G.; Chung, O.; Kim, S. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2014, 120, 549–554. [Google Scholar] [CrossRef]
- Lazzarin, R.M.; Mancin, S.; Noro, M.; Righetti, G. Hybrid PCM-aluminium foams’ thermal storages: An experimental study. Int. J. Low-Carbon Technol. 2018, 13, 286–291. [Google Scholar] [CrossRef]
- Delgado, W.; Stamatiou, A.; Maranda, S.; Waser, R.; Worlitschek, J. Comparison of Heat Transfer Enhancement Techniques in Latent Heat Storage. Appl. Sci. 2020, 10, 5519. [Google Scholar] [CrossRef]
- Amagour, M.E.H.; Rachek, A.; Bennajah, M.; Ebn Touhami, M. Experimental investigation and comparative performance analysis of a compact finned-tube heat exchanger uniformly filled with a phase change material for thermal energy storage. Energy Convers. Manag. 2018, 165, 137–151. [Google Scholar] [CrossRef]
- Waser, R.; Maranda, S.; Stamatiou, A.; Zaglio, M.; Worlitschek, J. Modeling of solidification including supercooling effects in a fin-tube heat exchanger based latent heat storage. Sol. Energy 2020, 200, 10–21. [Google Scholar] [CrossRef]
Saturated Symmetrical Triglycerides (SST) | |||||||
---|---|---|---|---|---|---|---|
Structure | Melting Point (Peak [C]) | H [J/g] | |||||
Abbreviation | Given Name | ′ | ′ | ||||
6.6.6 | tricaproin | - | - | −25 [29] | - | - | - |
7.7.7 | trienanthin | - | - | - | - | - | - |
8.8.8 | tricaprylin | −51 [15], −54 [18] | −18 [15], −19 [18] | 9.4 [8], 9.9 [15], 11 [18], 10 [29] | 36.4 [18] | - | - |
9.9.9 | tripelargonin | −26 [15], −30 [18] | 7 [18] | 9.5 [8], 10.7 [15], 10 [18] | 69.4 [18] | 96.3 [18] | 106.9 [18] |
10.10.10 | tricaprin | −11.5 [28], −9 [15], −10 [18], −15 [11] | 16.9 [28], 15.5 [15], 13 [18] (3) [18], 18 (2) [18], 18 [11] | 30.4 [8], 31.7 [28], 31.9 [15], 32.3 [15], 33 [18], 31.5 [11], 31.7 [29], 32 [41] | 103.3 [28], 101.8 [18] | - | 171.2 [28], 165.9 [18] |
11.11.11 | triundecanoin | 3.7 [15], 4 [18], 1 [11] | 27.5 [15], 28 (1) [18], 26.5 [11] | 31.2 [15], 31 [18], 31.2 [41] | 92.5 [18] | 119.9 [18] | 141.6 [18] |
12.12.12 | trilaurin | 15.7 [28], 15.2 [15], 14 [18], 15 [11] | 35.2 [28], 34 [15], 34 (2) [18], 35 [11] | 46.3 [8], 45.8 [28], 46.5 [15], 46 [18], 46.4 [11], 46.5 [29], 46.4 [41] | 109.2 [28], 112.6 [18] | 134.6 [28] | 191.2 [28], 182.0 [18] |
13.13.13 | tritridecanoin | 24.4 [15], 23 [18], 25 [11] | 41.5 [15], 40 (1) [18], 41 [11] | 44.6 [8], 45.1 [15], 42 [18], 44 [11], 44.5 [41] | 109.3 [18] | 122.9 [18] | 146.2 [18] |
14.14.14 | trimyristin | 32.7 [28], 32.8 [15], 31 [18], 32.0 [40], 33 [11] | 46 [28], 45 (2) [18], 46.5 [11] | 57.4 [8], 57.2 [28], 58.5, 56 [18], 57 [11], 58 [29], 58.5 [41] | 113.3 [28], 117.5 [18], 154.3 [40] | 146.6 [28] | 203 [28], 189.2 [18] |
15.15.15 | tripentadecanoin | 38.5 [15], 41 [18], 40 [11] | 50.1 [15], 54 (2) [18], 56 (1) [18], 51.5 [11] | 55.5 [8], 56.2 [15], 58 [18], 54.6 [11] | 126.8 [18] | 142.2 [18] | 188.6 [18] |
16.16.16 | tripalmitin | 44.8 [28], 44.7 [15], 46 [18], 45 [11] | 55.8 [28], 56.6 [15], 57 (1) [18], 58.5 [40], 56 [11] | 66 [28], 66.4 [15], 66 [18], 65.5 [11], 66 [29], 65.4 [8], 66.4 [41] | 118.7 [28], 127.5 [18] | 156.7 [28], 185.9 [40] | 212.2 [28], 205.2 [18], 260.7 [14] |
17.17.17 | trimargarin | 50 [15], 50 [18], 50 [11] | 60.1 [15], 60 (2) [18], 61 [11] | 64 [18], 64.5 [15], 65 [18], 64 [11], 64 [41] | 129.1 [18] | 151.2 [18] | 199.0 [18] |
18.18.18 | tristearin | 54.8 [28], 54.7 [15], 55 [18], 54.5 [11] | 64.4 [28], 63.2 [15], 64 (1) [18], 63.5 [40], 65 [11] | 72.7 [8], 72.6 [28], 73.5 [15], 73 [18], 72 [11], 72.6 [29], 73 [41] | 121.7 [28], 125.8 [18] | 175.5 [28], 184.9 [14], 149.4 [40] | 217.8 [28], 215 [18], 257.7 [14] |
19.19.19 | trinonadecanoin | 58.2 [15], 60 [18] | 64.5 [15], 65 (2) [18] | 71.3 [8], 71.4 [15], 72 [18], 71 [41] | 129.1 [18] | 145.7 [18] | 199.9 [18] |
20.20.20 | triarachidin | 6328, 61.8 [15], 64 [18] | 69.6 [28], 69 [15], 69 (2) [18] | 77.7 [8], 77.9 [28], 78.1 [15], 78 [18], 78.1 [29], 78 [41] | 126.6 [28], 125.2 [18] | 164.4 [28] | 219.5 [28], 226 [18] |
21.21.21 | triheneicosanoin | 65 [15], 66 [18] | 71 [15], 70 (2) [18], 73 (1) [18] | 76.4 [8], 75.9 [15], 76 (2) [18], 77 (1) [18], 75.9 [41] | 125.4 [18] | 147.2 [18] | 177.6 [18] |
22.22.22 | tribehenin | 68.8 [28], 68.2 [15], 69 (2) [18], 70 (1) [18] | 74.92 [8], 74 [15], 74 (2) [18] | 82.5 [8], 81.8 [28], 82.5 [15], 83 [18], 82.5 [29], 82.5 [41] | 135.1 [28], 135 [18] | 147.9 [28], 143.7 [18] | 213.7 [28], 211.2 [18] |
23.23.23 | tritricosanoin | 71 (2) [18], 72 (1) [18] | 75 (2) [18], 76 (1) [18] | 81.9 [8], 80 (2) [18], 81 (1)1 [18] | 127.6 [18] | 144.7 [18] | 173.5 [18] |
24.24.24 | trilignocerin | 74 (2) [18], 75 (1) [18] | 79 (2) [18], 81 (1) [18] | 86 [18], 86 [29], 86 [41] | 140.4 [18] | 136.1 [18] | 197.9 [18] |
25.25.25 | tripentacosanoin | - | - | - | - | - | - |
26.26.26 | tricerotin | 78 (2) [18], 79 (1) [18] | 82 (2) [18], 85 (1) [18] | 89 [18] | 132.2 [18] | 129.8 [18] | 190.8 [18] |
27.27.27 | tricarbocerin | - | - | - | - | - | - |
28.28.28 | trimontanin | 80 (2) [18], 82 (1) [18] | 91 (1) [18] | - | 86.7 [18] | 132.3 [18] | - |
29.29.29 | trinonacosanoin | - | - | - | - | - | - |
30.30.30 | trimelissin | 79 (2) [18], 83 (1) [18] | 93 (1) [18] | - | 68.9 [18] | 107.5 [18] | - |
Unsaturated Symmetrical Triglycerides (UST) | |||||||
---|---|---|---|---|---|---|---|
Structure | Melting Point (Peak [C]) | H [J/g] | |||||
Abbreviation | Given Name | ′ | ′ | ||||
14.14.14:1 cis 9 | Trimyristolein | - | - | - | - | - | - |
16.16.16:1 cis 9 | Tripalmitolein | −25.8 [41] | −22.8 [41], −21.9 [41], −21.8 [41] | 25.7 [41] | - | - | - |
16.16.16:1 trans 9 | Tri-trans-9-hexadecenoin | - | - | - | - | - | - |
16.16.16:1 cis 6 | (6Z)-trihexadecenoin | −15.0 [16] | - | 15.0 [16] | - | - | 115.9 [16] |
18.18.18:1 cis 6 | Tripetroselinin | −2.0 (estimated) [16] | - | 28.0 [8,16] | - | - | 128.4 [16] |
18:18:18:1 trans 6 | Tripetroselaidin | 32.0 (estimated) [16] | - | 52.0 [8,16] | - | - | 179.9 [16] |
18.18.18:1 cis 9 | Triolein | −32.0 [11], −37.0 [16], −32.0 [8] | −12.0 [11], −12.0 (3) [16], −8.0 (2) [16], −5.0 (1) [16], −5.5 [8] | −2.5 (onset) [17], 4.9 [14], 5.0 [16], 5.0 [8], 4.0 [41], 5.0 [45] | - | - | 105.9 [17], 108 [16] |
18.18.18:1 trans 9 | Trielaidin | 15.5 [11], 15.0 [16] | 37.0 [11] | 41.5, 41.0 [16] | - | - | 165.3 [16] |
18.18.18:1 cis 11 | Tri-cis-11-octadecenoin | −11.0 (estimated) [16] | −3.0 (3) [16], 0.0 (2) [16], 3.0 (1) [16], 1.0 [41] | 10.0 [16] | - | 105.9 [16] | 113.4 [16] |
18.18.18:1 trans 11 | Trivaccenin | - | - | - | - | - | - |
18.18.18:2 cis 9-12 | Trilinolein | −43.0 [11], −45.6 [31] | - | −12.9 [11], −12.9 [31], −11.0 [8], −12.7 [41] | - | - | - |
18.18.18:3 cis 9-12-15 | tri--linolenin | −84.0 [16] | −44.6 [31], −47.0 (3) [16], −27.0(2) [16], −21.0 (1) [16] | −24.2 [31] | - | - | 96.2 [31] |
19.19.19:1 cis 10 | (10Z)-trinonadecenoin | 26.1 [41] (no mention) | - | - | - | ||
20.20.20:1 cis 9 | Trigadolein | - | - | - | - | - | - |
20.20.20:1 cis 11 | Trieicosenoin | 10.1 [41], 17.8 [41] (no mention) | - | - | - | ||
21.21.21:1 cis 12 | (12Z)-trihenecosenoin | 38.0 [41](no mention) | - | - | - | ||
22.22.22:1 cis 13 | Trierucin | 6.0 [11], 12.0 (estimated) [16] | 25.0 [11], 22.0 (3) [16], 25.0 (2) [16], 29.0 (1) [16], 29.8 [41] | 32.5 [11], 32.0 [16], 32.0 [8], 32.0 [41] | - | - | 138.1 [16] |
22.22.22:1 trans 13 | (13E)-tridocosenoin | 40.0 [16] | 50.0 (2) [16], 56.0 (1) [16] | 58.0 [16], 58.0 [8], 58 [41] | - | - | 143.9 [16] |
24.24.24:1 cis 15 | Trinervonin | - | - | - | - | - | - |
Saturated Asymmetrical Triglycerides (SAT) | |||||||
---|---|---|---|---|---|---|---|
Structure | Melting Point (Peak [C]) | H [J/g] | |||||
Abbreviation | Given Name | ′ | ′ | ||||
n.n-2.n | |||||||
12.10.12 | 1,3-dilaurin-2-caprin (LCL) | 5.1 [28], 2.0 [11] | 33.1 [28], 33.0 [11] | 37.5 [28], 38.5 [11], 38.5 [29] | - | - | - |
16.14.16 | 1,3-dipalmitin-2-myristin (PMP) | 39.2 [28] | 51.1 [28] | 60.0 [28], 60.0 [29] | 101.4 [28] | - | 175.8 [28] |
18.16.18 | 1,3-distearin-2-palmitin (SPS) | 50.8 [28], 50.0 [11] | 64.1 [28] | 68.1 [28], 68.0 [11], 68.0 [29] | 119.3 [28] | - | 197.2 [28] |
n.n+2.n | |||||||
10.12.10 | 1,3-dicaprin-2-laurin (CLC) | 6.1 [28], 6.0 [11] | 37.8 [28], 34.0 [11] | 37.6 [28], 37.5 [11] | 117.8 [28] | 153.8 [28] | - |
14.16.14 | 1,3-dimyristin-2-palmitin (MPM) | 36.3 [28], 37.0 [11] | 59.6 [28], 55.0 [11] | 59.3 [28], 60.0 [11] | 124.0 [28] | 169.3 [28] | - |
16.18.16 | 1,3-dipalmitin-2-stearin (PSP) | 47.3 [28], 49.0 [11] | 67.8 [28], 65.0 [11], 65.5 [29] | 68.0 [11] | 134.3 [28] | 198.1 [28] | - |
n.n.n+2 | |||||||
10.10.12 | 1,2-dicaprin-3-laurin (CCL) | 0.1 [28], 0.0 [11] | 26.1 [28], 26.0 [11] | 30.1 [28], 30.0 [11], 30.0 [29] | - | - | - |
14.14.16 | 1,2-dimyristin-3-palmitin (MMP) | 26.9 [28], 36.0 [11] | 48.6 [28], 47.5 [11] | 53.4 [28], 52.0 [11], 54.0 [29] | 108.0 [28] | 133.3 [28] | 174.6 [28] |
16.16.18 | 1,2-dipalmitin-3-stearin (PPS) | 46.5 [28], 46.5 [11] | 58.8 [28], 59.5 [11] | 62.7 [28], 62.5 [11], 62.5 [29] | 119.6 [28] | 148.3 [28] | 198.9 [28] |
n.n+4.n+4 | |||||||
10.14.14 | 1-caprin-2,3-dimyristin (CMM) | 15.1 [28], 15.0 [11] | 38.1 [28], 38.0 [11] | 43.6 [28], 43.5 [11], 43.5 [29] | - | - | - |
12.16.16 | 1-laurin-2,3-dipalmitin (LPP) | 32.1 [28] | 49.6 [28] | 54.5 [28], 54.0 [29] | - | - | - |
18.22.22 | 1-stearin-2,3-dibehenin (SBB) | 61.4 [28] | 71.6 [28] | 73.6 [28], 73.2 [29] | - | - | - |
n1.n2.n3 | |||||||
18.10.16 | 1-stearin-2-caprin-3-palmitin (SCP) | 20.2 [28] | 53.9 [28] | 54.3 [28] | 106.8 [28] | - | 166.8 [28] |
16.14.12 | 1-palmitin-2-myristin-3-laurin (PML) | 36.6 [28] | 44.1 [28] | 48.6 [28] | 102.3 [28] | 130.0 [28] | 172.9 [28] |
18.14.16 | 1-stearin-2-myristin-3-palmitin (SMP) | 41.0 [28] | 56.2 [28] | 59.7 [28] | 115.2 [28] | - | 188.3 [28] |
Structure | Heat Capacity [J/(g·K)] (at Room Temperature) | Thermal Conductivity [W/(m·K)] (at Room Temperature) | |
---|---|---|---|
Abbreviation | Given Name | ||
6.6.6 | tricaproin | 1.88 [47] | - |
8.8.8 | tricaprylin | 1.94 [44,48], 1.96 [49] | 0.15 [46] |
10.10.10 | tricaprin | 1.97 [44,48], 2.08 [49] | 0.15 [46] |
12.12.12 | trilaurin | 2.06 [44,48], 2.05 [47] | 0.16 [46] |
14.14.14 | trimyristin | 2.14 [46,48], 2.10 [47] | 0.17 [46], 0.23 [40] |
16.16.16 | tripalmitin | 2.20 [47] | 0.19 [40] |
18.18.18 | tristearin | 2.23 [47] | 0.17 [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravotti, R.; Worlitschek, J.; Pulham, C.R.; Stamatiou, A. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties. Molecules 2020, 25, 5572. https://doi.org/10.3390/molecules25235572
Ravotti R, Worlitschek J, Pulham CR, Stamatiou A. Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties. Molecules. 2020; 25(23):5572. https://doi.org/10.3390/molecules25235572
Chicago/Turabian StyleRavotti, Rebecca, Jörg Worlitschek, Colin R. Pulham, and Anastasia Stamatiou. 2020. "Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties" Molecules 25, no. 23: 5572. https://doi.org/10.3390/molecules25235572
APA StyleRavotti, R., Worlitschek, J., Pulham, C. R., & Stamatiou, A. (2020). Triglycerides as Novel Phase-Change Materials: A Review and Assessment of Their Thermal Properties. Molecules, 25(23), 5572. https://doi.org/10.3390/molecules25235572