Metabolite Characterization and Correlations with Antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach
Abstract
:1. Introduction
2. Results
2.1. Visual Inspection of 1H-NMR Spectra of OPL Extracts and Metabolite Identification
2.2. Classification of OPL Extracts by Principal Component Analysis (PCA)
2.3. Influence of OPL Extracts on Polyphenolic Contents, Antioxidant, and Wound Healing Properties
2.4. Correlation between Identified Metabolites and Antioxidant and Wound Healing Activities of OPL Extracts
3. Discussion
4. Materials and Methods
4.1. Reagents, Solvents, and Commercial Standards
4.2. Sampling and Preparation of Extracts
4.3. NMR Sample Preparation, Measurement, and Spectra Processing
4.4. Total Phenolic (TPC) and Flavonoid Content (TFC) Determination
4.5. In Vitro Antioxidant Assays
4.6. In Vitro Wound Healing Assays
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malaysian Palm Oil Board (MPOB). Available online: http://www.mpob.gov.my/ (accessed on 25 April 2018).
- Setiabudi, H.D.; Jusoh, R.; Suhaimi, S.F.R.M.; Masrur, S.F. Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2016, 63, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Rasat, M.S.M.; Wahab, R.; Yunus, A.A.M.; Moktar, J.; Ramle, S.F.M.; Kari, Z.A.; Yusoff, M. Physical And Mechanical Properties of Bio-Composite Board from Compressed Oil Palm Fronds. Adv. Nat. Appl. Sci. 2013, 7, 572–582. [Google Scholar]
- Haron, K.; Brookes, P.C.; Anderson, J.M.; Zakaria, Z.Z. Microbial biomass and soil organic matter dynamics in oil palm (Elaeis guineensis jacq.) plantations, West Malaysia. Soil. Biol. Biochem. 1998, 30, 547–552. [Google Scholar] [CrossRef]
- Khosravihaftkhany, S.; Morad, N.; Abdullah, A.Z.; Teng, T.T.; Ismail, N. Biosorption of Pb (ii) and Fe (iii) from aqueous co-solutions using chemically pretreated oil palm fronds. RSC Adv. 2015, 5, 106498–106508. [Google Scholar] [CrossRef]
- Mohd Kassim, A.S.; Aripin, A.M.; Ishak, N.; Zainulabidin, M.H.; Abang Zaidel, D.N.F. Oil palm leaf fibre and its suitability for paper-based products. ARPN J. Eng. Appl. Sci. 2016, 11, 7364–7369. [Google Scholar]
- Ghani, A.A.A.; Rusli, N.D.; Shahudin, M.S.; Goh, Y.M.; Zamri-Saad, M.; Hafandi, A.; Hassim, H.A. Utilisation of oil palm fronds as ruminant feed and its effect on fatty acid metabolism. Pertanika J. Trop. Agric. Sci. 2017, 40, 215–224. [Google Scholar]
- Tahir, N.I.; Shaari, K.; Abas, F.; Parveez, G.K.A.; Ishak, Z.; Ramli, U.S. Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) Leaf using LC-ESI-MS/MS. J. Agric. Food Chem. 2012, 60, 11201–11210. [Google Scholar] [CrossRef]
- Tahir, N.I.; Shaari, K.; Abas, F.; Ahmad Parveez, G.K.; Ahmad Tarmizi, H.; Ramli, U.S. Identification of oil palm (Elaeis guineensis) spear leaf metabolites using mass spectrometry and neutral loss analysis. J. Oil Palm Res. 2013, 25, 72–83. [Google Scholar]
- Mushtaq, M.Y.; Choi, Y.H.; Verpoorte, R.; Wilson, E.G. Extraction for metabolomics: Access to the metabolome. Phytochem. Anal. 2014, 25, 291–306. [Google Scholar] [CrossRef]
- Bucar, F.; Wube, A.; Schmid, M. Natural product isolation—How to get from biological material to pure compounds. Nat. Prod. Rep. 2013, 30, 525–545. [Google Scholar] [CrossRef] [Green Version]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Fara, D.C.; Yang, H.; Tämm, K.; Tamm, T.; Karelson, M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004, 104, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Jones, W.P.; Kinghorn, A.D. Extraction of Plant Secondary Metabolites. In Natural Products Isolation, 2nd ed.; Sarker, S.D., Latif, Z., Eds.; Human Press Inc.: Totowa, NJ, USA, 2006; Volume 20, pp. 323–351. [Google Scholar]
- Leiss, K.A.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G.L. An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem. Rev. 2011, 10, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Verpoorte, R.; Choi, Y.H.; Kim, H.K. Metabolomics: What’s new? Flavour Fragr. J. 2010, 25, 128–131. [Google Scholar] [CrossRef]
- Heyman, H.M.; Meyer, J.J.M. NMR-based metabolomics as a quality control tool for herbal products. S. Afr. J. Bot. 2012, 82, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.C.; Pawlus, A.D.; Jewett, E.M.; Wyse, D.L.; Angerhofer, C.K.; Hegeman, A.D. Evaluating solvent extraction systems using metabolomics approaches. RSC Adv. 2014, 4, 26325–26334. [Google Scholar] [CrossRef]
- Hernández-Bolio, G.I.; Kutzner, E.; Eisenreich, W.; de Jesús Torres-Acosta, J.F.; Peña-Rodríguez, L.M. The use of 1H-NMR Metabolomics to Optimise the Extraction and Preliminary Identification of Anthelmintic Products from the Leaves of Lysiloma latisiliquum. Phytochem. Anal. 2017, 29, 413–420. [Google Scholar] [CrossRef]
- Lee, S.Y.; Abas, F.; Khatib, A.; Ismail, I.S.; Shaari, K.; Zawawi, N. Metabolite profiling of Neptunia oleracea and correlation with antioxidant and α-glucosidase inhibitory activities using 1H-NMR-based metabolomics. Phytochem. Lett. 2016, 16, 23–33. [Google Scholar] [CrossRef]
- Ismail, S.N.; Maulidiani, M.; Akhtar, M.T.; Abas, F.; Ismail, I.S.; Khatib, A.; Ali, N.A.M.; Shaari, K. Discriminative Analysis of Different Grades of Gaharu (Aquilaria malaccensis Lamk.) via 1H-NMR-Based Metabolomics Using PLS-DA and Random Forests Classification Models. Molecules 2017, 22, 1612. [Google Scholar] [CrossRef] [Green Version]
- Vargas, L.H.G.; Neto, J.C.R.; de Aquino Ribeiro, J.A.; Ricci-Silva, M.E.; Souza, M.T.; Rodrigues, C.M.; de Oliveira, A.E.; Abdelnur, P.V. Metabolomics analysis of oil palm (Elaeis guineensis) leaf: Evaluation of sample preparation steps using UHPLC-MS/MS. Metabolomics 2016, 12, 153. [Google Scholar] [CrossRef]
- Rozali, N.L.; Yarmo, M.A.; Idris, A.S.; Kushairi, A.; Ramli, U.S. Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant Omics. 2017, 10, 45–52. [Google Scholar] [CrossRef]
- Zain, M.S.C.; Lee, S.Y.; Teo, C.Y.; Shaari, K. Adsorption and Desorption Properties of Total Flavonoids from Oil Palm (Elaeis guineensis Jacq.) Mature Leaf on Macroporous Adsorption Resins. Molecules 2020, 25, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zain, M.S.C.; Lee, S.Y.; Sarian, M.N.; Fakurazi, S.; Shaari, K. In vitro wound healing potential of flavonoid c-glycosides from oil palm (Elaeis guineensis Jacq.) leaves on 3t3 fibroblast cells. Antioxidants 2020, 9, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizan, A.; Ahamad Bustamam, M.S.; Maulidiani, M.; Shaari, K.; Ismail, I.S.; Nagao, N.; Abas, F. Metabolite profiling of the microalgal diatom chaetoceros calcitrans and correlation with antioxidant and nitric oxide inhibitory Activities via1H NMR-Based Metabolomics. Mar. Drugs 2018, 16, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pariyani, R.; Ismail, I.S.; Ahmad Azam, A.; Abas, F.; Shaari, K. Identification of the compositional changes in Orthosiphon stamineus leaves triggered by different drying techniques using 1H NMR metabolomics. J. Sci. Food Agric. 2017, 97, 4169–4179. [Google Scholar] [CrossRef] [PubMed]
- Azizan, A.; Xin, L.A.; Abdul Hamid, N.A.; Maulidiani, M.; Mediani, A.; Abdul Ghafar, S.Z.; Zulaikha Zolkeflee, N.K.; Abas, F. Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and α-glucosidase inhibitory activities by 1H-NMR. Foods 2020, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verpoorte, R.; Choi, Y.H.; Kim, H.K. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev. 2007, 6, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, M.I.; Ali, K.; Alipieva, K.; Verpoorte, R.; Choi, Y.H. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry 2011, 72, 2045–2051. [Google Scholar] [CrossRef]
- Khoo, L.W.; Kow, A.S.F.; Maulidiani, M.; Ang, M.Y.; Chew, W.Y.; Lee, M.T.; Tan, C.P.; Shaari, K.; Tham, C.L.; Abas, F. 1H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. Phytochem. Anal. 2019, 30, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37, D603–D610. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, H.; Shaari, K.; Choi, Y.H.; Lajis, N.H. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Li, Y.; He, Q.; Geng, Z.; Du, S.; Deng, Z.; Hasi, E. NMR-based metabolomic profiling of Peganum harmala L. reveals dynamic variations between different growth stages. R. Soc. Open Sci. 2018, 5, 171722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Hu, F.; Miyakawa, T.; Tanokura, M. Complex mixture analysis of organic compounds in yogurt by NMR spectroscopy. Metabolites 2016, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Zhong, Q.; Fauhl-Hassek, C.; Pfister, M.K.H.; Horn, B.; Huang, Z. Classification of Chinese wine varieties using 1H NMR spectroscopy combined with multivariate statistical analysis. Food Control 2018, 88, 113–122. [Google Scholar] [CrossRef]
- Sulaiman, F.; Ahmad Azam, A.; Ahamad Bustamam, M.S.; Fakurazi, S.; Abas, F.; Lee, Y.X.; Ismail, A.A.; Mohd Faudzi, S.M.; Ismail, I.S. Metabolite Profiles of Red and Yellow Watermelon (Citrullus lanatus) Cultivars Using a 1H-NMR Metabolomics Approach. Molecules 2020, 25, 3235. [Google Scholar] [CrossRef]
- Khoo, L.W.; Mediani, A.; Zolkeflee, N.K.Z.; Leong, S.W.; Ismail, I.S.; Khatib, A.; Shaari, K.; Abas, F. Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem. Lett. 2015, 14, 123–133. [Google Scholar] [CrossRef]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef]
- Razali, M.T.A.; Zainal, Z.A.; Maulidiani, M.; Shaari, K.; Zamri, Z.; Mohd Idrus, M.Z.; Khatib, A.; Abas, F.; Ling, Y.S.; Rui, L.L.; et al. Classification of raw stingless bee honeys by bee species origins using the NMR- and LC-MS-based metabolomics approach. Molecules 2018, 23, 2160. [Google Scholar] [CrossRef] [Green Version]
- Pramai, P.; Abdul Hamid, N.A.; Mediani, A.; Maulidiani, M.; Abas, F.; Jiamyangyuen, S. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: Nuclear magnetic resonance based metabolomics study. J. Food Drug Anal. 2016, 26, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Kim, H.K.; Linthorst, H.J.; Hollander, J.G.; Lefeber, A.W.; Erkelens, C.; Nuzillard, J.M.; Verpoorte, R. NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J. Nat. Prod. 2006, 69, 742–748. [Google Scholar] [CrossRef]
- Ganbaatar, C.; Gruner, M.; Mishig, D.; Duger, R.; Schmidt, A.W.; Knölker, H.-J. Flavonoid glycosides from the aerial parts of Polygonatum odoratum (Mill.) Druce growing in Mongolia. Open Nat. Prod. J. 2015, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Eom, S.L.; Hyun, J.Y.; Jo, G.H.; Hwang, D.S.; Lee, S.H.; Yong, Y.J.; Lee, Y.H.; Lim, Y.H.; Park, J.C. 1H- and 13C-NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts. Bull Korean Chem. Soc. 2011, 32, 2101–2104. [Google Scholar] [CrossRef] [Green Version]
- NMR Predict. Available online: http://www.nmrdb.org (accessed on 20 October 2020).
- Human Metabolome Database. Available online: http://www.hmdb.ca/ (accessed on 20 October 2020).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 20 October 2020).
- Wan-Nadilah, W.A.; Akhtar, M.T.; Shaari, K.; Khatib, A.; Hamid, A.A.; Hamid, M. Variation in the metabolites and α-glucosidase inhibitory activity of Cosmos caudatus at different growth stages. BMC Complement. Altern. Med. 2019, 19, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berregi, I.; Santos, J.I.; Del Campo, G.; Miranda, J.I. Quantitative determination of (-)-epicatechin in cider apple juices by 1H NMR. Talanta 2003, 61, 139–145. [Google Scholar] [CrossRef]
- Abdul-Hamid, N.A.; Abas, F.; Ismail, I.S.; Shaari, K.; Lajis, N.H. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates. J. Food Sci. 2015, 80, H2603–H2611. [Google Scholar] [CrossRef]
- Cuc, N.T.; Nhiem, N.X.; Yen, P.H.; Anh, H.L.T.; Van Minh, C.; Van Kiem, P. Flavonoid glygosides from Antidesma ghaesembilla. Vietnam J. Chem. 2015, 53, 94–97. [Google Scholar]
- Grasso, D.; Chin, Y.P.; Weber, W.J., Jr. Structural and behavioral characterictiscs of a commercial humic acid and natural dissolved aquatic organic matter. Chemosphere 1990, 21, 1181–1197. [Google Scholar] [CrossRef] [Green Version]
- Ofori-Boateng, C.; Lee, K.T. Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochem. Rev. 2013, 12, 173–190. [Google Scholar] [CrossRef]
- Gothai, S.; Arulselvan, P.; Tan, W.; Fakurazi, S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J. Intercult. Ethnopharmacol. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Muhammad, A.A.; Aimi, N.; Pauzi, S.; Arulselvan, P.; Abas, F.; Fakurazi, S. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam. BioMed Res. Int. 2013, 2013, 974580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Süntar, I.; Akkol, E.K.; Nahar, L.; Sarker, S.D. Wound healing and antioxidant properties: Do they coexist in plants? Free Radic. Antioxid. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Hamid, N.A.; Abas, F.; Ismail, I.S.; Tham, C.L.; Maulidiani, M.; Mediani, A.; Swarup, S.; Umashankar, S.; Zolkeflee, N.K.Z. Metabolites and biological activities of Phoenix dactylifera L. pulp and seeds: A comparative MS and NMR based metabolomics approach. Phytochem. Lett. 2019, 31, 20–32. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, T.; Duan, W.; Zhang, Z.; Li, Y.; Fang, B.; Xia, M.; Wang, M. Effects of organic acids, amino acids and phenolic compounds on antioxidant characteristic of Zhenjiang aromatic vinegar. Molecules 2019, 24, 3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, M.S.; Quarta, A.; Marradi, M.; Ragusa, A. Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations. Pharmaceutics 2019, 11, 505. [Google Scholar] [CrossRef] [Green Version]
- Rezaeizadeh, A. Some Mechanisms for Wound Healing Enhancing Effects of Bitter Gourd (Momordica charantia L.) Extract in Diabetic Rats. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, July 2013. [Google Scholar]
- Jorge, M.P.; Madjarof, C.; Ruiz, A.L.T.G.; Fernandes, A.T.; Rodrigues, R.A.F.; de Oliveira Sousa, I.M.; Foglio, M.A.; de Carvalho, J.E. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol. 2008, 118, 361–366. [Google Scholar] [CrossRef]
- Schäfer, M.; Werner, S. Oxidative stress in normal and impaired wound repair. Pharmacol. Res. 2008, 58, 165–171. [Google Scholar] [CrossRef]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Glevitzky, I.; Dumitrel, G.A.; Glevitzky, M.; Pasca, B.; Otrisal, P.; Bungau, S.; Cioca, G.; Pantis, C.; Popa, M. Statistical Analysis of the Relationship Between Antioxidant Activity and the Structure of Flavonoid Compounds. Rev. Chim. 2019, 70, 3103–3107. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Rastija, V.; Lucic, B.; Trinajstic, N. SAR and QSAR of the Antioxidant Activity of Flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef] [PubMed]
- Corley, R.H.V.; Tinker, P.B.H. The Oil Palm, 4th ed.; Black Science: Bath, UK, 2003; ISBN 0470750367. [Google Scholar]
- Lee, S.Y.; Mediani, A.; Maulidiani, M.; Khatib, A.; Ismail, I.S.; Zawawi, N.; Abas, F. Comparison of partial least squares and random forests for evaluating relationship between phenolics and bioactivities of Neptunia oleracea. J. Sci. Food Agric. 2018, 98, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Metabolites | 1H-NMR Chemical Shift (Multiplicity) | Aqueous Methanol | Absolute Methanol | Ethyl Acetate-Methanol | Ethyl Acetate | Reference |
---|---|---|---|---|---|---|---|
1 | Sucrose | 5.42 (d); 3.82 (m) | + | + | + | + | [21,27,30,38,39] |
2 | Fructose | 4.18 (d) | + | + | + | + | [21,29,39] |
3 | α-glucose | 5.18 (d) | + | + | + | + | [21,27,30,39] |
4 | β-glucose | 4.62 (d) | + | + | + | + | [21,29,30,39] |
5 | Choline | 3.20 (s) | + | + | + | + | [21,31,34,39] |
6 | Citric acid | 2.74 (d) | + | + | + | + | [29,30,39] |
7 | Fumaric acid | 6.54 (s) | + | + | + | - | [30,31,32] |
8 | Palmitic acid | 1.66 (m); 0.90 (t) | + | + | + | + | [27] |
9 | Succinic acid | 2.54 (s) | + | + | + | + | [30,38] |
10 | Aconitic acid | 3.42 (s) | + | + | + | + | [33] |
11 | Fatty acid | 1.34 (m) | + | + | + | + | [21,39,49] |
12 | α-linolenic acid | 1.30 (brs); 2.35 (t) | + | + | + | + | [27,29,30] |
13 | Acetic acid | 2.07 (s) | + | + | + | + | [35,36,37] |
14 | (−)-epicatechin | 7.04 (s); 6.95 (s) | + | + | + | + | [9,25,50,51] |
15 | (+)-catechin | 7.01 (d) | + | + | + | - | [9,25,50,51] |
16 | Orientin | 7.54 (s); 6.86 (s); 6.63 (s); 3.00–4.00 (m) | + | + | + | - | [8,25,26,32,39,52] |
17 | Isoorientin | 7.40 (d); 6.89 (d); 6.67 (s); 6.48 (s); 3.00–4.00 (m); 1.96 (s) | + | + | + | - | [8,25,26,32,39,52] |
18 | Vitexin | 8.02 (d); 6.89 (d); 6.77 (s); 3.00–4.00 (m); 1.17 (t) | + | + | + | - | [8,25,26,32,39,52] |
19 | Isovitexin | 7.79 (d); 6.88 (d); 6.52 (s); 3.00–4.00 (m); 1.17 (t) | + | + | + | - | [8,25,26,32,39,52] |
Solvent Systems | Polyphenolic Contents | Antioxidant Activities | Wound Healing Properties | ||||
---|---|---|---|---|---|---|---|
TPC (mg GAE/g) | TFC (mg QCE/g) | FRAP (mg AAE/g) | DPPH IC50 (µg/mL) | NO IC50 (µg/mL) | Proliferation (%) | Migration (%) | |
Ethyl acetate | 121.71 ± 32.78 a | 5.94 ± 3.58 a | 16.26 ± 6.65 a | 67.92 ± 14.16 a | 213.34 ± 58.14 a | 94.97 ± 2.12 a | 64.34 ± 1.68 a |
Ethyl acetate-methanol | 174.19 ± 32.40 b | 121.48 ± 6.67 b | 94.00 ± 23.94 b | 10.74 ± 3.51 b | 109.08 ± 29.61 b | 98.41 ± 4.07 a | 85.83 ± 3.25 b |
Absolute methanol | 213.08 ± 41.61 b | 135.40 ± 9.76 b | 71.62 ± 21.05 b | 6.54 ± 3.31 b,c | 67.64 ± 21.97 c | 100.13 ± 1.07 a | 88.56 ± 6.94 b |
Aqueous methanol | 393.61 ± 36.11 c | 129.72 ± 8.7 b | 101.48 ± 16.67 b | 3.53 ± 1.30 c | 18.77 ± 3.37 d | 107.7 ± 13.11 a | 93.34 ± 4.35 b |
Activity | TPC | TFC | DPPH | NO | FRAP | Proliferation | |
---|---|---|---|---|---|---|---|
Antioxidant | TFC | 0.605 | |||||
DPPH | 0.654 | 0.997 * | |||||
NO | 0.869 | 0.914 | 0.933 | ||||
FRAP | 0.705 | 0.921 | 0.945 | 0.887 | |||
Wound healing | Proliferation | 0.995 * | 0.677 | 0.723 | 0.911 | 0.762 | |
Migration | 0.761 | 0.976 * | 0.988 * | 0.976 * | 0.947 | 0.820 |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che Zain, M.S.; Lee, S.Y.; Nasir, N.M.; Fakurazi, S.; Shaari, K. Metabolite Characterization and Correlations with Antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach. Molecules 2020, 25, 5636. https://doi.org/10.3390/molecules25235636
Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K. Metabolite Characterization and Correlations with Antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach. Molecules. 2020; 25(23):5636. https://doi.org/10.3390/molecules25235636
Chicago/Turabian StyleChe Zain, Mohamad Shazeli, Soo Yee Lee, Nadiah Mad Nasir, Sharida Fakurazi, and Khozirah Shaari. 2020. "Metabolite Characterization and Correlations with Antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach" Molecules 25, no. 23: 5636. https://doi.org/10.3390/molecules25235636
APA StyleChe Zain, M. S., Lee, S. Y., Nasir, N. M., Fakurazi, S., & Shaari, K. (2020). Metabolite Characterization and Correlations with Antioxidant and Wound Healing Properties of Oil Palm (Elaeis guineensis Jacq.) Leaflets via 1H-NMR-Based Metabolomics Approach. Molecules, 25(23), 5636. https://doi.org/10.3390/molecules25235636