Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoemulsion Formulation
2.2. Effect of Storage Time and Conditions
2.3. FT-IR Analysis
2.4. FE-TEM Analysis
2.5. In Vitro Cytotoxicity of Cordyceps NE
2.6. Antioxidant Activity of Cordyceps Nanoemulsion
2.7. Antimicrobial Activity of Cordyceps Nanoemulsion
2.8. In Vitro Anti-Inflammatory Activity of Cordyceps NE
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Extract Preparation
3.2.2. Nanoemulsion Preparation Method
3.2.3. Characterization Process
3.2.4. Determination of the Stability of the Nanoemulsions
3.2.5. Antioxidant Activity
3.2.6. In Vitro Measurement of NO Production in LPS-Induced RAW 264.7 Cells
3.2.7. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
3.2.8. Cytotoxicity Assay
3.2.9. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Takala, P.; Vu, K.; Salmieri, S.; Lacroix, M. Effect of antimicrobial coatings on the radiosensitization of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes in fresh broccoli. J. Food Prot. 2011, 74, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Amado, J.R.R.; Prada, A.L.; Diaz, J.G.; Souto, R.N.P.; Arranz, J.C.E.; de Souza, T.P. Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environ. Sci. Pollut. Res. 2020, 27, 9410–9423. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Shanmugapriya, K.; Gereniu, C.R.N.; Chae, S.-J.; Kang, H.W.; Woo, H.-C.; Chun, B.-S. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrason. Sonochem. 2019, 55, 105–116. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Lucassen-Reynders, E. Competitive adsorption of emulsifiers 1. Theory for adsorption of small and large molecules. Colloids Surf. A Physicochem. Eng. Asp. 1994, 91, 79–88. [Google Scholar] [CrossRef]
- Kunieda, H.; Solans, C. Industrial Applications of Microemulsions; CRS press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Flory, P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1942, 10, 51–61. [Google Scholar] [CrossRef]
- Yu, S.-H.; Chen, S.-Y.T.; Li, W.-S.; Dubey, N.K.; Chen, W.-H.; Chuu, J.-J.; Leu, S.-J.; Deng, W.-P. Hypoglycemic activity through a novel combination of fruiting body and mycelia of Cordyceps militaris in high-fat diet-induced type 2 diabetes mellitus mice. J. Diabetes Res. 2015, 2015, 723190. [Google Scholar] [CrossRef] [Green Version]
- Kiho, T.; Shiose, Y.; Nagai, K.; Ukai, S. Polysaccharides in fungi. XXX. Antitumor and immunomodulating activities of two polysaccharides from the fruiting bodies of Armillariella tabescens. Chem. Pharm. Bull. 1992, 40, 2110–2114. [Google Scholar] [CrossRef] [Green Version]
- Marsup, P.; Yeerong, K.; Neimkhum, W.; Sirithunyalug, J.; Anuchapreeda, S.; To-Anun, C.; Chaiyana, W. Enhancement of Chemical Stability and Dermal Delivery of Cordyceps militaris Extracts by Nanoemulsion. Nanomaterials 2020, 10, 1565. [Google Scholar] [CrossRef]
- Ohmori, T.; Tamura, K.; Ohgane, N.; Nakamura, T.; Kawanishi, G.; Yamada, H.; Nomoto, K. The Correlation between Molecular Weight and Antitumor Acitivity of Galactosaminoglycan (CO-N) from Cordyceps ophioglossoides. Chem. Pharm. Bull. 1989, 37, 1337–1340. [Google Scholar] [CrossRef] [Green Version]
- Shashidhar, M.; Giridhar, P.; Sankar, K.U.; Manohar, B. Bioactive principles from Cordyceps sinensis: A potent food supplement–A review. J. Funct. Foods 2013, 5, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Kedrowski, B.L.; Mueller, M.J. Skin Lightening Compounds from Fruit Seed Extracts. Google Patent 16/322,241, 2019. [Google Scholar]
- Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011, 28, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Ramadan, W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf. B Biointerfaces 2010, 75, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Wakerly, M.G.; Pouton, C.W.; Meakin, B.J.; Morton, F.S. Self-Emulsification of Vegetable Oil-Nonionic Surfactant Mixtures: A Proposed Mechanism of Action; ACS Publications: Washington, DC, USA, 1986. [Google Scholar]
- Mehmood, T.; Ahmad, A.; Ahmed, A.; Ahmed, Z. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: A response surface methodology approach. Food Chem. 2017, 229, 790–796. [Google Scholar] [CrossRef]
- Anarjan, N.; Mirhosseini, H.; Baharin, B.S.; Tan, C.P. Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT-Food Sci. Technol. 2011, 44, 1658–1665. [Google Scholar] [CrossRef]
- Teo, B.S.X.; Basri, M.; Zakaria, M.R.S.; Salleh, A.B.; Rahman, R.N.Z.R.A.; Rahman, M.B.A. A potential tocopherol acetate loaded palm oil esters-in-water nanoemulsions for nanocosmeceuticals. J. Nanobiotechnol. 2010, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.; Boock, K.; Maruno, M.; Rocha-Filho, P. Accelerated stability and moisturizing capacity of emulsions presenting lamellar gel phase obtained from brazilian natural raw material. J. Dispers. Sci. Technol. 2011, 32, 1135–1139. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Y.; Smith, E. Experimental design for the optimization of lipid nanoparticles. J. Pharm. Sci. 2009, 98, 1813–1819. [Google Scholar] [CrossRef]
- Tan, S.; Billa, N.; Roberts, C.; Burley, J. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 73–79. [Google Scholar] [CrossRef]
- Junyaprasert, V.B.; Teeranachaideekul, V.; Souto, E.B.; Boonme, P.; Müller, R.H. Q10-loaded NLC versus nanoemulsions: Stability, rheology and in vitro skin permeation. Int. J. Pharm. 2009, 377, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Mei, Z.; Xu, J.; Sun, D. Effect of inorganic electrolytes on the formation and the stability of water-in-oil (W/O) emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 429, 82–90. [Google Scholar] [CrossRef]
- Komaiko, J.; McClements, D.J. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water systems. J. Colloid Interface Sci. 2014, 425, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.A.N.; Elgharbawy, A.A.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef] [Green Version]
- Rupa, E.J.; Kaliraj, L.; Abid, S.; Yang, D.-C.; Jung, S.-K. Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials 2019, 9, 1692. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Hoeller, S.; Sperger, A.; Valenta, C. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int. J. Pharm. 2009, 370, 181–186. [Google Scholar] [CrossRef]
- Araújo, F.; Kelmann, R.G.; Araújo, B.; Finatto, R.; Teixeira, H.; Koester, L. Development and characterization of parenteral nanoemulsions containing thalidomide. Eur. J. Pharm. Sci. 2011, 42, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Liu, H.; Wu, S.; Pang, L.; Jia, M.; Fan, K.; Jia, S.; Jia, L. Production and in vitro antioxidant activity of exopolysaccharide by a mutant, Cordyceps militaris SU5-08. Int. J. Biol. Macromol. 2012, 51, 153–157. [Google Scholar] [CrossRef]
- Sari, T.; Mann, B.; Kumar, R.; Singh, R.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Joung, H.J.; Choi, M.J.; Kim, J.T.; Park, S.H.; Park, H.J.; Shin, G.H. Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. J. Food Sci. 2016, 81, N745–N753. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Zheng, H.; Maoqing, Y.; Liqiu, X.; Wenjuan, T.; Liang, L.; Guolin, Z. Purification and characterization of an antibacterial protein from the cultured mycelia ofCordyceps sinensis. Wuhan Univ. J. Nat. Sci. 2006, 11, 709–714. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. J. Mol. Liq. 2016, 224, 1332–1340. [Google Scholar] [CrossRef]
- Xiao, J.-H.; Xiao, D.-M.; Sun, Z.-H.; Xiong, Q.; Liang, Z.-Q.; Zhong, J.-J. Chemical compositions and antimicrobial property of three edible and medicinal Cordyceps species. J Food Agric Env. 2009, 7, 91–100. [Google Scholar]
- Zhang, Z.-Q.; Liang, K.-J.; Gao, X.-K.; Liu, Y.; Li, Z.-T.; Wang, T.-T. Optimization of Ultrasound-assisted Extraction of Polysaccharides from Portulaca oleracea L. Food Res. Dev. 2017, 38, 41–45. [Google Scholar]
- Varona, S.; Rojo, S.R.; Martín, Á.; Cocero, M.J.; Serra, A.T.; Crespo, T.; Duarte, C.M. Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Ind. Crop. Prod. 2013, 42, 243–250. [Google Scholar] [CrossRef]
- Cox, S.; Mann, C.; Markham, J.; Bell, H.C.; Gustafson, J.; Warmington, J.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Won, S.-Y.; Park, E.-H. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 2005, 96, 555–561. [Google Scholar] [CrossRef]
- Sugumar, S.; Ghosh, V.; Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason. Sonochem. 2014, 21, 1044–1049. [Google Scholar] [CrossRef]
- Islam, M.N.; Ishita, I.J.; Jin, S.E.; Choi, R.J.; Lee, C.M.; Kim, Y.S.; Jung, H.A.; Choi, J.S. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 2013, 55, 541–548. [Google Scholar] [CrossRef] [PubMed]
Water Extract (Cordyceps) | Sea-Buckthorn Oil | Surfactant | Co-surfactant (Chitosan) | |
---|---|---|---|---|
S1 | 88% | 6 | 6 | 0.1% |
S2 | 82% | 6 | 12 | 0.1% |
S3 | 78% | 6 | 18 | 0.1% |
No. of Parameter | Cordyceps Nanoemulsion | |||
---|---|---|---|---|
24 h Observation | 90 Days Observation | |||
Temperature | Room Temperature | 4 °C | 25 °C | 60 °C |
Particles size (nm) | 87.0 ± 2.1 | 87.1 ± 3 | 114.5 ± 2 | 161.8 |
PDI value | 0.089 ± 0.023 | 0.100 ± 0.030 | 0.122 ± 0.04 | 0.106 ± 0.04 |
Zeta potential (mV) | −26.20 ± 2 | −25.94 ± 0.7 | −19.81 ± 0.5 | −12 ± 1.2 |
pH value | 5.43 ± 0.05 | 5.4 ± 0.02 | 5.39 ± 0.04 | 5.33 ± 0.012 |
GAPDH | Forward | 5′-ACCACAGTCCATGCCATCAC-3 |
Reverse | 5′-CCACCACCCTGTTGCTGTAG-3 | |
IL-1β | Forward | 5′-TGCAGAGTTCCCCAACTGGTACATC-3′ |
Reverse | 5′-GTGCTGCCTAATGTCCCCTTGAATC-3′ | |
TNF-α | Forward | 5′-AGCCCACGTCGTAGCAAACCACCAA-3′ |
Reverse | 5′-AACACCCATTCCCTTCACAGAGCAAT-3′ | |
IL-6 | Forward | 5′-GTTCTCTGGGAAATCGTGGA-3′ |
Reverse | 5′-TGTACTCCAGGTAGCTATGG-3′ | |
iNOS | Forward | 5′-AATGGCAACATCAGGTCGGCCATCACT-3 |
Reverse | 5′-GCTGTGTGTCACGAAGTCTCGAACTC-3 | |
NFκB | Forward | 5′-TATTTCAACCACAGATGGCACTGC-3 |
Reverse | 5′-CAGATTTTGACCTGAGGGTAAGAC-3 | |
IKKα | Forward | 5′-GGCCTGTGATGTCCTGAAGAATT-3 |
Reverse | 5′-TCGAATCCCAGACCCTATATCACT-3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupa, E.J.; Li, J.F.; Arif, M.H.; Yaxi, H.; Puja, A.M.; Chan, A.J.; Hoang, V.-A.; Kaliraj, L.; Yang, D.C.; Kang, S.C. Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Molecules 2020, 25, 5733. https://doi.org/10.3390/molecules25235733
Rupa EJ, Li JF, Arif MH, Yaxi H, Puja AM, Chan AJ, Hoang V-A, Kaliraj L, Yang DC, Kang SC. Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Molecules. 2020; 25(23):5733. https://doi.org/10.3390/molecules25235733
Chicago/Turabian StyleRupa, Esrat Jahan, Jin Feng Li, Muhammad Huzaifa Arif, Han Yaxi, Aditi Mitra Puja, Ahn Jong Chan, Van-An Hoang, Lalitha Kaliraj, Deok Chun Yang, and Se Chan Kang. 2020. "Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities" Molecules 25, no. 23: 5733. https://doi.org/10.3390/molecules25235733
APA StyleRupa, E. J., Li, J. F., Arif, M. H., Yaxi, H., Puja, A. M., Chan, A. J., Hoang, V. -A., Kaliraj, L., Yang, D. C., & Kang, S. C. (2020). Cordyceps militaris Fungus Extracts-Mediated Nanoemulsion for Improvement Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Molecules, 25(23), 5733. https://doi.org/10.3390/molecules25235733