Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Extraction Tube
2.2. Characterization of Extraction Material
2.3. Online IT-SPME-HPLC Procedure
2.4. Comparison of Extraction Performance between COPs-BFs and Bare BFs
2.5. Investigation of Extraction and Desorption Conditions
2.6. Method Evaluation
2.7. Analysis of Real Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Apparatus
3.3. Preparation of Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Honda, L.; Becerra-Herrera, M.; Richter, P. Liquid chromatography-time-of-flight high-resolution mass spectrometry study and determination of the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater. Anal. Bioanal. Chem. 2018, 410, 7909–7919. [Google Scholar] [CrossRef]
- Hirao-Suzuki, M.; Takeda, S.; Okuda, K.; Takiguchi, M.; Yoshihara, S. Repeated exposure to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, aggressively stimulates breast cancer cell growth in an estrogen receptor beta (ERbeta)-dependent manner. Mol. Pharmacol. 2019, 95, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Kozlowska-Tylingo, K.; Namieśnik, J.; Górecki, T. Determination of estrogenic endocrine disruptors in environmental samples-a review of chromatographic methods. Crit. Rev. Anal. Chem. 2010, 40, 194–201. [Google Scholar] [CrossRef]
- Corrotea, Y.; Aguilera, N.; Honda, L.; Richter, P. Determination of hormones in wastewater using rotating disk sorptive extraction and gas chromatography-mass spectrometry. Anal. Lett. 2015, 2719, 1344–1358. [Google Scholar] [CrossRef]
- Fang, T.Y.; Praveena, S.M.; deBurbure, C.; Aris, A.Z.; Ismail, S.N.S.; Rasdi, I. Analytical techniques for steroid estrogens in water samples—A review. Chemosphere 2016, 165, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2016, 99, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, X.; Li, X.; Wang, M.; Zhao, R.-S.; Lin, J. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples. Anal. Bioanal. Chem. 2018, 410, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wei, D.; Wang, M.; Wang, S. Determination of six phthalic acid es-ters in orange juice packaged by PVC bottle using SPE and HPLC-UV: Application to the migration study. J. Chromatogr. Sci. 2010, 48, 760–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ncube, S.; Lekoto, G.; Cukrowska, E.; Chimuka, L. Development and optimisation of a novel three-way extraction technique based on a combination of soxhlet extraction, membrane-assisted solvent extraction and a molecularly imprinted polymer using sludge polycyclic aromatic hydrocarbons as model compounds. J. Sep. Sci. 2017, 41, 918–928. [Google Scholar] [CrossRef]
- Yang, P.; Ren, H.; Qiu, H.; Liu, X.; Jiang, S. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction. Chem. Pap. 2011, 65, 747–753. [Google Scholar] [CrossRef]
- Aguirre, A.M.; Antonio, C.; Ignacio, L.; Manuel, H. Determination of c-admium in used engine oil, gasoline and diesel by electrothermal atomic absorption spectrometry using magnetic ionic liquid-based dispersive liquid-liquid microextraction. Talanta 2020, 220, 121395. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, L.; Ding, Y.; Ming, Y. Simultaneous determination of four pht-halate esters in water samples using ultrasound-assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. Chin. J. Chromatogr. 2013, 31, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Chen, W.; Zhang, M.; Huang, F.; Cao, Q. Determination of phthalate esters in liquor samples by vortex-assisted surfactant-enhanced-emulsific-ation liquid-liquid microextraction followed by GC-MS. J. Sep. Sci. 2014, 37, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Meng, W.; Zhou, Y.; Wang, X.; Xu, G.; Wang, M.; Lin, J.; Zhao, R.-S. β-ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples. Chem. Eng. J. 2019, 356, 926–933. [Google Scholar] [CrossRef]
- Meng, W.; Liu, L.; Wang, X.; Zhao, R.-S.; Wang, M.; Lin, J. Polyphenylene core-conjugated microporous polymer coating for highly sensitive solid-phase microextraction of polar phenol compounds in water samples. Anal. Chim. Acta 2018, 1015, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xu, G.; Li, L.; Wang, X.; Li, N.; Zhao, R.-S.; Lin, J. Facile fabrication of MIL-96 as coating fiber for solid-phase microextraction of trihalomethanes and halonitromethanes in water samples. Chem. Eng. J. 2018, 350, 240–247. [Google Scholar] [CrossRef]
- Lee, J.B.; Jeong, Y.A.; Ahn, D.J.; Bang, I.S. SPME-GC/MS analysis of methanol in biospecimen by derivatization with pyran compound. Molecules 2019, 25, 41. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.X.; Hao, L.X.; Lin, X.J.; Liu, X.F.; Qiu, X.N.; Zhang, X.T.; Hu, X.G. An in-tube aptamer/gold nanoparticles coated capillary solid-phase microextraction for separation of adenosine in serum and urine samples. J. Chromatogr. A 2020, 1611, 460617. [Google Scholar] [CrossRef]
- Feng, J.; Tian, Y.; Wang, X.; Luo, C.; Sun, M. Basalt fibers functionalized with gold nanoparticles for in-tube solid-phase microextraction. J. Sep. Sci. 2018, 41, 1149–1155. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Chen, Z. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal. Chim. Acta 2018, 1018, 111–118. [Google Scholar] [CrossRef]
- Shamsayei, M.; Yamini, Y.; Asiabi, H. Electrochemically controlled fiber-in-tube solid-phase microextraction method for the determination of trace amounts of antipsychotic drugs in biological samples. J. Sep. Sci. 2018, 41, 3598–3606. [Google Scholar] [CrossRef] [PubMed]
- González-Fuenzalida, R.A.; López-García, E.; Moliner-Martínez, Y.; Campíns-Falcó, P. Adsorbent phases with nanomaterials for in-tube solid-phase microextraction coupled on-line to liquid nanochromatography. J. Chromatogr. A 2016, 1432, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, J.; Zeng, T.; Zhang, X.; Li, H.; Wen, C.; Yan, Z.; Zeng, J. In situ catalysis and extraction approach for fast evaluation of heterogeneous catalytic efficiency. Anal. Chem. 2020, 92, 9989–9996. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wang, X.; Tian, Y.; Bu, Y.; Luo, C.; Sun, M. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. J. Chromatogr. A 2017, 1517, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Rodríguez, H.D.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Innovations in extractive phases for in-tube solid-phase microextraction coupled to miniaturized liquid chromatography: A critical review. Molecules 2020, 25, 2460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.; Zhu, W.; Qin, P.; Lu, M.; Zhang, X.; Miao, Y.; Cai, Z. Mesoporous graphitic carbon nitride@NiCo2O4 nanocomposite as a solid phase microextraction coating for sensitive determination of environmental pollutants in human serum samples. Chem. Commun. 2019, 55, 10019–10022. [Google Scholar] [CrossRef]
- Maloko Loussala, H.; Feng, J.; Han, S.; Sun, M.; Ji, X.; Li, C.; Fan, J.; Pei, M. Carbon nanotubes functionalized mesoporous silica for in-tube solid-phase microextraction to polycyclic aromatic hydrocarbons. J. Sep. Sci. 2020, 43, 3275–3284. [Google Scholar] [CrossRef]
- Feng, J.; Maloko Loussala, H.; Han, S.; Ji, X.; Li, C.; Sun, M. Recent advances of ionic liquids in sample preparation. Trac Trend Anal. Chem. 2020, 125, 115833. [Google Scholar] [CrossRef]
- Feng, J.; Mao, H.; Wang, X.; Tian, Y.; Luo, C.; Sun, M. Ionic liquid chemically bonded basalt fibers for in-tube solid-phase microextraction. J. Sep. Sci. 2018, 41, 1839–1846. [Google Scholar] [CrossRef]
- Wang, X.; Lu, M.; Wang, H.; Huang, P.; Ma, X.; Cao, C.; Du, X. Three-dimensional graphene aerogel-mesoporous carbon composites as novel coatings for solid-phase microextraction for the efficient enrichment of brominated flame retardants. New J. Chem. 2016, 40, 6308–6314. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, J.; Wang, X.; Luo, C.; Sun, M. Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction. J. Chromatogr. A 2019, 1583, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, Y.; Zheng, X.; Li, Z.; Zeng, T.; Duan, W.; Li, Q.; Shang, X.; Dong, B. Controllable transformation of aligned ZnO nanorods to ZIF-8 as solid-phase microextraction coatings with tunable porosity, polarity and conductivity. Anal. Chem. 2019, 91, 5091–5097. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Meng, W.; Li, L.; Xu, G.; Wang, X.; Chen, L.; Wang, M.; Lin, J.; Zhao, R.-S. Facile room-temperature synthesis of a spherical mesoporous covalent organic framework for ultrasensitive solid-phase microextraction of phenols prior to gas chromatography-tandem mass spectrometry. Chem. Eng. J. 2019, 369, 920–927. [Google Scholar] [CrossRef]
- Zhou, B.L.; Chen, L. New strategies for the synthesis of covalent organic porous polymers. Acta Chim. Sin. 2015, 73, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Shen, J.Z.; Ai, S.Y.; Wang, X.L.; Zhang, C.Y. In-situ synthesis of covalent organic polymer thin film integrates with palladium nanoparticles for the construction of a cathodic photoelectrochemical cytosensor. Biosens. Bioelectron. 2020, 168, 112545. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.D.; Zhai, L.Z.; Tong, M.M.; Tanay, K.; Liu, G.L.; Ying, Y.P.; Dong, J.Q.; Wang, Y.X.; Zhao, D. Selective gas permeation in mixed matrix membranes accelerated by hollow ionic covalent organic polymers. ACS Sustain. Chem. Eng. 2019, 7, 1564–1573. [Google Scholar] [CrossRef]
- Ma, R.Y.; Wang, W.J.; Wang, Z.; Zhang, S.H.; Li, Z.; Li, J.Q.; Zang, X.H.; Wang, C.; Wang, Z. Mesoporous covalent organic polymer nanospheres for the preconcentration of polycyclic aromatic hydrocarbons and their derivatives. J. Chromatogr. A 2020, 1624, 461217. [Google Scholar] [CrossRef] [PubMed]
- Risticevic, S.; Lord, H.; Górecki, T.; Arthur, C.L.; Pawliszyn, J. Protocol for solid-phase microextraction method development. Nat. Protoc. 2010, 5, 122–139. [Google Scholar] [CrossRef] [PubMed]
Analytes | Linear Ranges (μg/L) | a r | LODs (μg/L) | Enrichment Factors | Total Recoveries | b Extraction Repeatability (n = 3, RSD%) | c Preparation Repeatability (n = 3, RSD%) |
---|---|---|---|---|---|---|---|
Bisphenol A | 0.003–20 | 0.9985 | 0.001 | 1800 | 60.0% | 1.9 | 12.8 |
17 α-Ethylestradiol | 0.015–20 | 0.9986 | 0.005 | 2175 | 72.5% | 5.2 | 8.4 |
Estrone | 0.015–20 | 0.9982 | 0.005 | 2208 | 73.6% | 4.3 | 8.0 |
Diethylstilbestrol | 0.015–20 | 0.9993 | 0.005 | 2493 | 83.1% | 4.5 | 5.9 |
Hexestrol | 0.003–20 | 0.9990 | 0.001 | 2229 | 74.3% | 2.6 | 7.0 |
Analytes | Wastewater (μg/L) | a Recovery (n = 3, %) | b Recovery (n = 3, %) | Water in PC cup (μg/L) | b Recovery (n = 3, %) | c Recovery (n = 3, %) |
---|---|---|---|---|---|---|
Bisphenol A | 0.24 ± 0.02 | 102 ± 3.5 | 92 ± 3.2 | NQ | 98 ± 2.8 | 86 ± 3.8 |
17 α-Ethylestradiol | NQ | 84 ± 3.8 | 96 ± 4.7 | ND | 91 ± 4.5 | 96 ± 4.0 |
Estrone | ND | 86 ± 2.7 | 90 ± 5.6 | ND | 89 ± 3.9 | 97 ± 5.7 |
Diethylstilbestrol | 0.39 ± 0.03 | 106 ± 1.4 | 98 ± 2.9 | ND | 94 ± 1.6 | 103 ± 4.1 |
Hexestrol | NQ | 88 ± 4.6 | 88 ± 3.0 | ND | 93 ± 5.0 | 104 ± 2.2 |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Xu, P.; Feng, J.; Sun, M. Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction. Molecules 2020, 25, 5788. https://doi.org/10.3390/molecules25245788
Jiang Q, Xu P, Feng J, Sun M. Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction. Molecules. 2020; 25(24):5788. https://doi.org/10.3390/molecules25245788
Chicago/Turabian StyleJiang, Qiong, Peng Xu, Juanjuan Feng, and Min Sun. 2020. "Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction" Molecules 25, no. 24: 5788. https://doi.org/10.3390/molecules25245788
APA StyleJiang, Q., Xu, P., Feng, J., & Sun, M. (2020). Application of Covalent Organic Porous Polymers-Functionalized Basalt Fibers for in-Tube Solid-Phase Microextraction. Molecules, 25(24), 5788. https://doi.org/10.3390/molecules25245788