Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats
Abstract
:1. Introduction
2. Results
2.1. Morphological Characterization of Nano-CUR
2.2. Effect of Nano-CUR on Body Weight Relative Liver and Kidney Weights
2.3. Effect of Nano-CUR on LPO, MDA, GSH, and TAC as Oxidative Biomarkers
2.4. Nano-CUR Activities on Antioxidant Biomarker Enzymes (SOD, CAT, and GPx) in TZ-Treated Rats
2.5. Influence of Nano-CUR on Total Proteins
2.6. Influence of Nano-CUR on the Transcriptional Activity of Stress and Apoptosis-Related Genes
2.7. Genotoxicity Results
3. Discussion
4. Facts
- TP53 works as a critical tumor suppressor and is mutated in 50% of human cancers.
- In unstressed cells, the levels of the p53 protein are very small because the E3 ubiquitin ligase MDM2 targets it for proteasomal degradation.
- TP53 is activated in response to the activation of oncogenes and DNA damage stress stimuli.
- Activated p53 regulates the transcription of approximately 500 genes directly and many additional genes by indirect ways. Thereby, it controls diverse cellular procedures.
- Non-transformed cells induce apoptosis by P53 mostly by the direct transcriptional activation of the proapoptotic BH3-only proteins (PUMA and NOXA).
- A combined loss of the PUMA plus NOXA and cell cycles arrest/cell senescence (p21) is not responsible for spontaneous tumor growth.
- PUMA and NOXA-induced apoptosis is critical for the malignant cells death by anticancer medications that activate TP53, but other effectors contribute [46].
5. Materials and Methods
5.1. Chemicals
5.2. Preparation of Nano-CUR
6. Experimental
6.1. Animals
6.2. Expermintal Design
- Group 1 (G1): Rats orally ingested 1 mL of distilled water daily for 50 days and used as control.
- Group 2 (G2): Rats orally ingested tartrazine (TZ) 7.5 mg/kg b.w. (prepared in 1 mL distilled water) daily for 50 days.
- Group 3 (G3): Rats orally ingested Nano-CUR 1 g/kg b.w. dissolved in 1 mL of distilled water daily for 50 days.
- Group 4 (G4): Rats orally ingested a mixture of (1 g Nano-CUR + 7.5 mg of TZ/kg b.w.) dissolved in 1 mL of distilled water daily for 50 days to understand if the increasing concentration of nano-CUR can cause any toxicity.
- Group 5 (G5): Animals orally ingested a mixture of (2 g Nano-CUR + 7.5 mg of TZ/kg b.w.) dissolved in 1 mL of distilled water daily for 50 days.
6.3. Collection of Samples
6.4. Liver and Kidney Homogenates Preparation
6.5. Lipid Peroxide (LPO) Levels Determination
6.6. Determination of Total Antioxidant Capacity (TAC)
6.7. Determination of Reduced GSH of Liver and Kidney
6.8. Analysis of Total Protein Concentration
6.9. Antioxidant Enzymes Activity
6.9.1. SOD Activity
6.9.2. CAT Activity
6.9.3. Estimation of GPx Activity
6.10. RNA Isolation
6.11. Reverse-Transcriptase PCR
6.12. qRT-PCR Fold Change Calculations
6.13. Separation of Bone Marrow Cells
6.14. Comet Assay
6.15. Statistical Data Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tawfek, N.S.; Amin, H.M.; Abdalla, A.A.; Fargali, S.H.M. Adverse effects of some food additives in adult male albino rats. Curr. Sci. Int. 2015, 4, 525–537. [Google Scholar]
- Pressman, P.; Clemens, R.; Hayes, W.; Reddy, C. Food additive safety, A review of toxicologic and regulatory issues. Toxicol. Res. Appl. 2017, 1, 1–22. [Google Scholar]
- Said, S.A.M.; El-Amin, I.M.; Al-Shehri, A.M. Renewable Energy Potentials in Saudi Arabia (Lecture). Workshop; American University of Beirut, Faculty of Engineering and Architecture: Beirut, Lebanon, 2008. [Google Scholar]
- Mehedi, N.; Ainad-Tabet, S.; Mokrane, N.; Addou, S.; Zaoui, C.; Kheroua, O.; Saidi, D. Reproductive Toxicology of Tartrazine (FD and C Yellow No. 5) in Swiss Albino Mice. Am. J. Pharmacol. Toxicol. 2009, 4, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Nevado, J.B.; Flores, J.R.; Cabanillas, C.; Villaseñor, M.J.; Salcedo, A.M.C. Resolution of ternary mixtures of Tartrazine, Sunset yellow and Ponceau 4R by derivative spectrophotometric ratio spectrum-zero crossing method in commercial foods. Talanta 1998, 46, 933–942. [Google Scholar] [CrossRef]
- JECFA. Joint FAO, and WHO Expert Committee on Food Additives. Fifty-Third Meeting. Summary and Conclusions; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Walton, J. Strategic Human Resource Development; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Mpountoukas, P.; Pantazaki, A.; Kostareli, E.; Christodoulou, P.; Kareli, D.; Poliliou, S.; Mourelatos, C.; Lambropoulou, V.; Lialiaris, T. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem. Toxicol. 2010, 48, 2934–2944. [Google Scholar] [CrossRef]
- Elhkim, M.O.; Héraud, F.; Bemrah, N.; Gauchard, F.; Lorino, T.; Lambré, C.; Frémy, J.M.; Poul, J.-M. New considerations regarding the risk assessment on Tartrazine, an update toxicological assessment, intolerance reactions and maximum theoretical daily intake in France. Regul. Toxicol. Pharmacol. 2007, 47, 308–316. [Google Scholar] [CrossRef]
- Potter, J.D.; Steinmetz, K. Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci. Publ. 1996, 139, 61–90. [Google Scholar]
- Moutinho, I.M.T.; Paulo, J.T.F.; Figueiredo, M.L. Paper surface chemistry as a tool to improve inkjet printing quality. BioResources 2011, 6, 4259–4270. [Google Scholar]
- Agriculture Organization of the United Nations. Fertilizer, and Plant Nutrition Service. In Fertilizer and Plant Nutrition Guide; No. 9; Food & Agriculture Organization: Rome, Italy, 1984. [Google Scholar]
- Sasaki, A.; Ashikari, M.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Swapan, D.; Kitano, H. A mutant gibberellin-synthesis gene in rice. Nature 2002, 416, 701–702. [Google Scholar] [CrossRef]
- Ernesto, S.; Robles-Osorio, M.L. Renal health and the environment, heavy metal nephrotoxicity. Nefrología (Engl. Ed.) 2012, 32, 279–286. [Google Scholar]
- Latifa, B.R.A.; Verawati, N.N.S.P.; Harjono, A. Pengaruh model learning cycle 5E (engage, explore, explain, elaboration, & evaluate) terhadap kemampuan berpikir kritis peserta didik kelas X man 1 mataram. J. Pendidik. Fis. Teknol. 2017, 3, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Himri, I.; Souna, F.; Aziz, M.; Hakkou, A.; Saalaoui, E. DNA damage induced by tartrazine in rat whole blood using comet assay (single cell gel electrophoresis). Adv. Environ. Biol. 2012, 6, 2875–2882. [Google Scholar]
- Chung, K.T.; Fulk, G.E.; Andrews, A.W. Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol. 1981, 42, 641–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, G.M. Effects of some synthetic coloring additives on DNA damage and chromosomal aberrations of rats. Arab J. Biotechnol. 2010, 13, 13–24. [Google Scholar]
- Wang, P.; Zhang, L.; Peng, H.; Li, Y.; Xiong, J.; Xu, Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater. Sci. Eng. C 2013, 33, 4802–4808. [Google Scholar] [CrossRef]
- Boarescu, P.-M.; Boarescu, I.; Bocșan, I.C.; Gheban, D.; Bulboacă, A.E.; Nicula, C.; Pop, R.M.; Râjnoveanu, R.-M.; Bolboacă, S.D. Antioxidant and Anti-Inflammatory Effects of Curcumin Nanoparticles on Drug-Induced Acute Myocardial Infarction in Diabetic Rats. Antioxidants 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Bulboacă, A.E.; Boarescu, P.M.; Bolboacă, S.D.; Blidaru, M.; Feștilă, D.; Dogaru, G.; Nicula, C.A. Comparative Effect Of Curcumin Versus Liposomal Curcumin On Systemic Pro-Inflammatory Cytokines Profile, MCP-1 And RANTES In Experimental Diabetes Mellitus. Int. J. Nanomed. 2019, 14, 8961–8972. [Google Scholar] [CrossRef] [Green Version]
- Bulboacă, A.E.; Bolboacă, S.D.; Bulboacă, A.C.; Porfire, A.S.; Tefas, L.R.; Suciu, Ş.M.; Dogaru, G.; Stănescu, I.C. Liposomal Curcumin Enhances the Effect of Naproxen in a Rat Model of Migraine. Med. Sci. Monit. 2019, 25, 5087–5097. [Google Scholar] [CrossRef]
- Kurien, B.T.; Matsumoto, H.; Scofield, R.H. Nutraceutical value of pure curcumin. Pharmacogn. Mag. 2017, 13, 161–S163. [Google Scholar] [CrossRef]
- Chakraborty, S.; Boolchand, P. Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GexS100–x glasses. J. Phys. Chem. B 2014, 118, 2249–2263. [Google Scholar] [CrossRef]
- Ezeuko Vitalis, C.; Nwokocha Chukwuemeka, R.; Mounmbegna Philippe, E.; Nriagu Chinonso, C. Effects of Zingiber officinale on liver function of mercuric chloride-induced hepatotoxicity in adult Wistar rats. Electron. J. Biomed. 2007, 3, 40–45. [Google Scholar]
- Chung, J.; Kuo, C.J.; Crabtree, G.R.; Blenis, J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 1992, 69, 1227–1236. [Google Scholar] [CrossRef]
- Hassan, M.M.; Amin, K.B.; Ahaduzzaman, M.; Alam, M.; Faruk, M.S.; Uddin, I. Antimicrobial Resistance Pattern against E. coli and Salmonella in Layer Poultry. Res. J. Vet. Pract. 2014, 2, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, A.; Sarkar, S.N.; Hajare, S.; Kataria, M.; Malik, J.K. Influence of malathion pretreatment on the toxicity of anilofos in male rats: A biochemical interaction study. Toxicology 2003, 185, 1–8. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Medicine and Biology; Clarendon: Oxford, UK, 1999. [Google Scholar]
- Ramiro-Puig, E.; Urpí-Sardà, M.; Pérez-Cano, F.J.; Franch, À.; Castellote, C.; Andrés-Lacueva, C.; Castell, M. Cocoa-Enriched Diet Enhances Antioxidant Enzyme Activity and Modulates Lymphocyte Composition in Thymus from Young Rats. J. Agric. Food Chem. 2007, 55, 6431–6438. [Google Scholar] [CrossRef] [PubMed]
- Pierrefiche, G.; Laborit, H. Oxygen free radicals, melatonin, and aging. Exp. Gerontol. 1995, 30, 213–227. [Google Scholar] [CrossRef]
- Peixoto, S.; Cavalli, R.O.; Wasielesky, W.; D’Incao, F.; Krummenauer, D.; Milach, Â.M. Effects of age and size on reproductive performance of captive Farfantepenaeus paulensis broodstock. Aquaculture 2004, 238, 173–182. [Google Scholar] [CrossRef]
- Ashakumari, L.; Vijayammal, P.L. Addictive effect of alcohol and nicotine on lipid peroxidation and antioxidant defense mechanism in rats. J. App. Toxicol. 1996, 16, 305–308. [Google Scholar] [CrossRef]
- Zheng, Q.; Davis, E.C.; Richardson, J.A.; Starcher, B.C.; Li, T.; Gerard, R.D.; Yanagisawa, H. Molecular Analysis of Fibulin-5 Function during De Novo Synthesis of Elastic Fibers. Mol. Cell. Biol. 2007, 27, 1083–1095. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, Y.; Adeleye, A.S.; Keller, A.A. Metabolomics Reveals Cu(OH)2Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. Environ. Sci. Technol. 2017, 51, 10184–10194. [Google Scholar] [CrossRef] [Green Version]
- Shetty, P.; Palve, A.; Pimpliskar, M.; Jadhav, R.N.; Shinde, P. In silico docking analysis of Sterculia lychnophora compounds against proteins causing Alzheimer’s disease. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 158–164. [Google Scholar]
- Hanna, D.H.; Saad, G.R. Nanocurcumin: Preparation, characterization and cytotoxic effects towards human laryngeal cancer cells. RSC Adv. 2020, 10, 20724–20737. [Google Scholar] [CrossRef]
- Rahimi, H.R.; Mohammadpour, A.H.; Dastani, M.; Jaafari, M.R.; Abnous, K.; Mobarhan, M.G.; Oskuee, R.K. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna J. Phytomed. 2016, 6, 567–577. [Google Scholar] [PubMed]
- El-Desoky, G.E.; Abdel-Ghaffar, A.; Al-Othman, Z.A.; Habila, M.A.; Al-Sheikh, Y.A.; Ghneim, H.K.; Giesy, J.P.; Aboul-Soud, M.A.M. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 635–645. [Google Scholar]
- Golka, K.; Kopps, S.; Myslak, Z.W. Carcinogenicity of azo colorants: Influence of solubility and bioavailability. Toxicol. Lett. 2004, 151, 203–210. [Google Scholar] [CrossRef]
- Patterson, R.; Butler, J. Tartrazine-induced chromosomal aberrations in mammalian cells. Food Chem. Toxicol. 1982, 20, 461–465. [Google Scholar] [CrossRef]
- Uberti, D.; Belloni, M.; Grilli, M.; Spano, P.; Memo, M. Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur. J. Neurosci. 1998, 10, 246–254. [Google Scholar] [CrossRef]
- Smith, W.; Gorospe, M.; Kusiak, J. Signaling Mechanisms Underlying Aβ Toxicity: Potential Therapeutic Targets for Alzheimers Disease. CNS Neurol. Disord. Drug Targets 2006, 5, 355–361. [Google Scholar] [CrossRef]
- Kruman, I.I.; Wersto, R.P.; Cardozo-Pelaez, F.; Smilenov, L.; Chan, S.L.; Chrest, F.J.; Emokpae, R.; Gorospe, M.; Mattson, M.P. Cell Cycle Activation Linked to Neuronal Cell Death Initiated by DNA Damage. Neuron 2004, 41, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Modeo, L. Method and System for Authenticating Messages Exchanged in a Communications System. U.S. Patent No. 7,634,280, 15 December 2009. [Google Scholar]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumor suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Poul, M.; Jarry, G.; Elhkim, M.O.; Poul, J.-M. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice. Food Chem. Toxicol. 2009, 47, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.F.; Kawaguchi, S.; Kamaya, A.; Ohshita, M.; Kabasawa, K.; Iwama, K.; Taniguchi, K.; Tsuda, S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res. Toxicol. Environ. Mutagen. 2002, 519, 103–119. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Memon, M. Biomass and nutrient uptake by rice and wheat, a three-way interaction of potassium, ammonium and soil type. Pak. J. Bot. 2009, 41, 2965–2974. [Google Scholar]
- El-Bahr, S. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats. BMC Complement. Altern. Med. 2013, 13, 368. [Google Scholar] [CrossRef] [Green Version]
- Albertini, R.J.; Anderson, D.; Douglas, G.R.; Hagmar, L.; Hemminki, K.; Merlo, F.; Natarajan, A.; Norppa, H.; Shuker, D.E.; Tice, R.; et al. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Mutat. Res. 2000, 463, 111–172. [Google Scholar] [CrossRef]
- Aditya, N.; Hamilton, I.E.; Norton, I.T. Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization. Food Chem. 2017, 224, 191–200. [Google Scholar] [CrossRef]
- Gopal, J.; Muthu, M.; Chun, S. Water soluble nanocurcumin extracted from turmeric challenging the microflora from human oral cavity. Food Chem. 2016, 211, 903–909. [Google Scholar] [CrossRef]
- Devara, R.K.; Mohammad, H.U.R.; Rambabu, B.; Aukunuru, J.; Habibuddin, M. Preparation, Optimization and Evaluation of Intravenous Curcumin Nanosuspensions Intended to Treat Liver Fibrosis. Turk. J. Pharm. Sci. 2015, 12, 8–24. [Google Scholar] [CrossRef]
- Hassan, S.K.; Mousa, A.M.; Eshak, M.G.; Farrag, E.H.; Badawi, A.F.M. Therapeutic and chemopreventive effects of nano curcumin against diethylnitrosamine induced hepatocellular carcinoma in rats. Int. J. Pharm. Pharm. Sci. 2014, 6, 54–62. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Erel, O. Anovel outomated direct measurement method for total antioxidant capacity using a new generation more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Schacterle, G.R.; Pollack, R.L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 1973, 51, 654–655. [Google Scholar] [CrossRef]
- Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys. 1984, 21, 130–132. [Google Scholar] [PubMed]
- Aebi, H. Catalase. In Methods of Enzymatic Analysis; Bergmeyer, H.U., Ed.; Weinheim and Academic Press: Weinheim, Germany, 1983; pp. 227–282. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [CrossRef]
- Al-Roba, A.A.; Aboul-Soud, M.A.; Ahmed, A.M.; Al-Khedhairy, A.A. The gene expression of caspasses is up-regulated during the signaling response of Aedes caspius against larvicidal bacteria. Afr. J. Biotechnol. 2011, 10, 225–233. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Pandey, A.K.; Bajpayee, M.; Parmar, D.; Dhawan, A. Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the comet assay. Mutat. Res. Toxicol. Environ. Mutagen. 2006, 607, 176–183. [Google Scholar] [CrossRef]
- Saquib, Q.; Al-Khedhairy, A.A.; Al-Arifi, S.; Dhawan, A.; Musarrat, J. Assessment of methyl thiophanate–Cu (II) induced DNA damage in human lymphocytes. Toxicol. In Vitro 2009, 23, 848–854. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Parameters | G1 | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|
Initial Body Weight (g) | 221.3 ± 1.73 | 225.9 ± 3.35 | 223.6 ± 2.51 | 224.6 ± 3.01 | 226.3 ± 3.32 |
Final Body Weight (g) | 256.7 ± 3.31 | 211.5 * ± 3.41 | 261.8 ± 2.50 | 260.3 ± 2.52 | 262.2 ± 4.35 |
Body Weight Gain (g) | 35.4 ± 0.32 | −14.4 * ± 0.12 | 38.2 ± 0.34 | 35.7 ± 0.36 | 35.9 ± 0.38 |
Liver Weight (g) | 5.00 ± 0.41 | 4.23 * ± 0.34 | 4.73 ± 0.33 | 5.51 ± 0.42 | 5.14 ± 0.34 |
Relative Liver Weight | 1.95 ± 0.002 | 2.00 * ± 0.003 | 1.81 ± 0.001 | 1.98 ± 0.003 | 1.96 ± 0.004 |
Kidney Weight (g) | 1.50 ± 0.04 | 0.59 * ± 0.06 | 1.25 ± 0.07 | 1.40 ± 0.07 | 1.48 ± 0.05 |
Relative Kidney Weight | 0.58 ± 0.043 | 0.47 * ± 0.042 | 0.48 ± 0.041 | 0.54 ± 0.044 | 0.56 ± 0.051 |
Organs | Blood | Liver | Kidneys | |||
---|---|---|---|---|---|---|
Parameters → Groups ↓ | TAC mM/L | LPO mg/100 mL | MDA n mole/mg Protein | GSH n mole/mg Protein | MDA n mole/mg Protein | GSH n mole/mg Protein |
G1 | 68.31 ± 4.21 | 29.31 ± 0.83 | 5.11 ± 0.08 | 354.3 ± 2.06 | 6.34 ± 0.05 | 348.3 ± 2.51 |
G2 | 45.62 ** ± 6.31 | 35.6 ** ± 4.21 | 6.63 ** ± 0.03 | 296.01 ** ± 4.31 | 8.1 ** ± 0.07 | 267.7 ** ± 4.21 |
G3 | 70.11 ± 2.31 | 28.6 ± 3.11 | 4.81 ± 0.07 | 355.6 ± 2.81 | 5.11 ± 0.02 | 352.1 ± 5.23 |
G4 | 65.63 ± 4.21 | 26.61 ± 5.31 | 5.61 ± 0.06 | 341.6 ± 4.21 | 6.72 ± 0.04 | 343.7 ± 2.20 |
G5 | 67.63 ± 4.16 | 25.21 ± 7.32 | 4.92 ± 0.03 | 350.0 ± 2.09 | 5.61 ± 0.04 | 351.3 ± 4.32 |
Tissues | Liver | Kidney | ||||||
---|---|---|---|---|---|---|---|---|
Parameters → Groups ↓ | Proteins | SOD | CAT | GPx | Proteins | SOD | CAT | GPx |
Group1 | 17.69 ± 1.35 | 7.06 ± 0.6 | 600.0 ± 6.36 | 185.6 ± 6.32 | 17.32 ± 1.36 | 6.21 ± 0.31 | 596.6 ± 7.39 | 179.6 ± 5.21 |
Group2 | 11.01 ** ± 0.99 | 4.63 ** ± 2.11 | 449.6 ** ± 2.11 | 122.3 ** ± 4.81 | 13.21 ** ± 1.11 | 4.16 ** ± 0.22 | 421.7 ** ± 9.21 | 120.1 ** ± 6.31 |
Group3 | 17.98 ± 1.33 | 7.21 ± 1.33 | 609.11 ± 3.92 | 186.2 ± 6.11 | 17.39 ± 1.93 | 6.71 ± 0.61 | 600.3 ± 6.82 | 180.6 ± 2.69 |
Group4 | 16.96 ± 2.31 | 6.71 ± 2.16 | 599.11 ± 2.83 | 181.3 ± 3.32 | 17.10 ± 2.21 | 5.82 ± 0.42 | 588.3 ± 8.29 | 178.6 ± 8.39 |
Group5 | 17.51 ± 2.12 | 6.98 ± 1.11 | 601.2 ± 3.61 | 185.3 ± 2.35 | 17.3 ± 3.29 | 6.11 ± 0.32 | 590.21 ± 6.33 | 180.1 ± 7.31 |
Target Gene | Forward (F) and Reverse (R) Primers (5′-3′) | GenBank Accession No. | T(a), °C |
---|---|---|---|
Caspase-3 | F: 5′-CAGAGCTGGACTGCGGTATTGA-3′ R: 5′-AGCATGGCGCAAAGTGACTG-3′ | NM_012922 | 60 |
Caspase-9 | F: 5′-AGCCAGATGCTGTCCCATAC-3′ R:5′-CAGGAGACAAAACCTGGGAA-3′ | AF262319 | 60 |
Tp53 | F: 5′-GTCGGCTCCGACTATACCACTATC-3′ R:5′-CTCTCTTTGCACTCCCTGGGGG-3′ | NM_030989 | 60 |
GAPDH | F: 5′-GCTGCCTTCTCTTGTGACAAAGT-3′ R: 5′-CTCAGCCTTGACTGTGCCATT-3′ | AF106860 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Desoky, G.E.; Wabaidur, S.M.; AlOthman, Z.A.; Habila, M.A. Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats. Molecules 2020, 25, 5801. https://doi.org/10.3390/molecules25245801
El-Desoky GE, Wabaidur SM, AlOthman ZA, Habila MA. Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats. Molecules. 2020; 25(24):5801. https://doi.org/10.3390/molecules25245801
Chicago/Turabian StyleEl-Desoky, Gaber E., Saikh M. Wabaidur, Zeid A. AlOthman, and Mohamed A. Habila. 2020. "Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats" Molecules 25, no. 24: 5801. https://doi.org/10.3390/molecules25245801
APA StyleEl-Desoky, G. E., Wabaidur, S. M., AlOthman, Z. A., & Habila, M. A. (2020). Regulatory Role of Nano-Curcumin against Tartrazine-Induced Oxidative Stress, Apoptosis-Related Genes Expression, and Genotoxicity in Rats. Molecules, 25(24), 5801. https://doi.org/10.3390/molecules25245801