Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Differentiation of Honey’s Variety and the Presence of Flower Pollen Grains
- the type of floral source (in turn dependent on flower structure, pollen content in nectar and the way in which nectar is collected and processed by bees);
- time of day when bees collect pollen and mix it with nectar from proventriculus (dependent on hive location and distance to the floral source);
- the way how honey is extracted from honeycombs by beekeepers (the extracted honey can get mixed with bee pollen or residue of honey from other floral sources).
2.2. Method Development
2.3. Correlation between Honey Types According to Their Physicochemical Properties
2.4. The Neonicotinoids Content in Honey
3. Materials and Methods
3.1. Reagents and Standards
3.2. Samples Collection
3.3. Comprehensive Signal Acquisition
3.4. Sample Preparation
3.5. Recovery
3.6. Method Validation
3.7. Determination of Physicochemical Properties
3.7.1. Pfund Value
3.7.2. Acidity and pH
3.7.3. Electrical Conductivity
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [Green Version]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef] [PubMed]
- Saranraj, P.; Sivasakthi, S. Comprehensive review on honey: Biochemical and medicinal properties. J. Acad. Res. 2018, 6, 165–181. [Google Scholar]
- Pita-Calvo, C.; Vázquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Laallam, H.; Boughediri, L.; Bissati, S.; Menasria, T.; Mouzaoui, M.S.; Hadjadj, S.; Hammoudi, R.; Chenchouni, H. Modeling the synergistic antibacterial effects of honey characteristics of different botanical origins from the Sahara Desert of Algeria. Front. Microbiol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from differentorigins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- De-Melo, A.A.M.; de Almeida-Muradian, L.B.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apismellifera honey: A review. J. Apic. Res. 2018, 57, 5–37. [Google Scholar] [CrossRef]
- Israili, Z.H. Antimicrobial properties of honey. Am. J. Ther. 2014, 21, 304–323. [Google Scholar] [CrossRef]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; Larhantec, M.; Delbac, F.; Pouliquen, H. Bees, honey and pollen as sentinels for lead environmental contamination. Environ. Pollut. 2012, 170, 254–259. [Google Scholar] [CrossRef]
- Krupke, C.H.; Long, E.Y. Intersections between neonicotinoid seed treatments and honey bees. Curr. Opin. Insect Sci. 2015, 10, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Long, E.Y.; Krupke, C.H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 2016, 7, 11629–11636. [Google Scholar] [CrossRef] [PubMed]
- Mogren, C.L.; Lundgren, J.G. Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci. Rep. 2016, 6, 29608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tette, P.A.S.; Guidi, L.R.; de Abreu Glória, M.B.; Fernandes, C. Pesticides in honey: A review on chromatographic analytical methods. Talanta 2016, 149, 124–141. [Google Scholar] [CrossRef]
- Wood, T.J.; Goulson, D. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. Int. 2017, 24, 17285–17325. [Google Scholar] [CrossRef]
- Breeze, T.D.; Boreux, V.; Cole, L.; Dicks, L.; Klein, A.M.; Pufal, G.; Balzan, M.V.; Bevk, D.; Bortolotti, L.; Petanidou, T.; et al. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat. 2019, 1, 562–572. [Google Scholar] [CrossRef]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity—USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bayo, F.; Desneux, N. Neonicotinoids and the prevalence of parasites and disease in bees. Bee World 2015, 92, 30–55. [Google Scholar] [CrossRef]
- Devillers, J. Acute toxicity of pesticides to honey bees. In Honey Bees: Estimating the Environmental Impact of Chemicals; Devillers, J., Pham-Delègue, M.-H., Eds.; Taylor & Francis: New York, NY, USA, 2002; pp. 56–66. [Google Scholar]
- Sánchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [Green Version]
- Fairbrother, A.; Purdy, J.; Anderson, T.; Fell, R. Risks of neonicotinoid insecticides to honeybees. Environ. Toxicol. Chem. 2014, 33, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Buszewski, B.; Bukowska, M.; Ligor, M.; Staneczko-Baranowska, I. A holistic study of neonicotinoids neuroactive insecticides—Properties, applications, occurrence and analysis. Environ. Sci. Pollut. Res. Int. 2019, 26, 34723–34740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurino, D.; Porporato, M.; Patetta, A.; Manino, A. Toxicity of neonicotinoid insecticides to honey bees: Laboratory tests. Bull. Insectol. 2011, 64, 107–113. [Google Scholar]
- Mitchell, E.A.D.; Mulhauser, B.; Mulot, M.; Mutabazi, A.; Glauser, G.; Aebi, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Tao, L.; McLean, J.; Lu, C. Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures. J. Agric. Food Chem. 2014, 62, 6082–6090. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 2019, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Jovanov, P.; Guzsvány, V.; Lazić, S.; Franko, M.; Sakač, M.; Šarić, L.; Kos, J. Development of HPLC-DAD method for determination of neonicotinoids in honey. J. Food Compos. Anal. 2015, 40, 106–113. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [Google Scholar] [CrossRef]
- Schaafsma, A.; Limay-Rios, V.; Baute, T.; Smith, J.; Xue, Y. Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in South western Ontario. PLoS ONE 2015, 10, e0118139. [Google Scholar] [CrossRef] [Green Version]
- Tanner, G.; Czerwenka, C. LC-MS/MS analysis of neonicotinoid insecticides in honey: Methodology and residue findings in Austrian honeys. J. Agric. Food Chem. 2011, 59, 12271–12277. [Google Scholar] [CrossRef]
- Jovanov, P.; Guzsvány, V.; Franko, M.; Lazić, S.; Sakač, M.; Milovanović, I.; Nedeljković, N. Development of multiresidue DLLME and QuEChERS based LC–MS/MS method for determination of selected neonicotinoid insecticides in honey liqueur. Food Res. Int. 2014, 55, 11–19. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 2016, 3, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giroud, B.; Vauhez, A.; Vulliet, E.; Wiest, L.; Bulete, A. Trace level determination of pyrethroid and neonicotinoid insecticides in beebread using acetonitrile-based extraction followed by analysis with ultra–high–performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1316, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurwadkar, S.; Evans, A. Neonicotinoids: Systemic insecticides and systematic failure. Bull. Environ. Contam. Toxicol. 2016, 97, 745–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Bayo, F. The trouble with neonicotinoids. Science 2014, 346, 806–807. [Google Scholar] [CrossRef] [PubMed]
- Rolke, D.; Fuchs, S.; Grünewald, B.; Gao, Z.; Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: Effects on honey bees (Apismellifera). Ecotoxicology 2016, 25, 1648–1665. [Google Scholar] [CrossRef] [Green Version]
- Schmuck, R.; Lewis, G. Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology 2016, 25, 1617–1629. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.C.; Kozii, I.V.; Koziy, R.V.; Epp, T.; Simko, E. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS ONE 2018, 13, e0190517. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, B.A.; Ridding, L.; Freeman, S.N.; Pereira, M.G.; Sleep, D.; Redhead, J.; Aston, D.; Carreck, N.L.; Shore, R.F.; Bullock, J.M.; et al. Neonicotinoid residues in UK honey despite European Union moratorium. PLoS ONE 2018, 13, e0189681. [Google Scholar] [CrossRef]
- La Lone, C.A.; Villeneuve, D.L.; Wu-Smart, J.; Milsk, R.Y.; Sappington, K.; Garber, K.V.; Housenger, J.; Ankley, G.T. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. Sci. Total Environ. 2017, 584–585, 751–775. [Google Scholar] [CrossRef] [Green Version]
- Thany, S.H. Insect Nicotinic Acetylcholine Receptors; Landes Bioscience and Springer Science+Business Media, LLC: New York, NY, USA, 2010. [Google Scholar]
- Tosi, S.; Nieh, J.C.; Sgolastra, F.; Cabbri, R.; Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. R. Soc. B 2017, 284, 1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruczek, A.; Stacewicz, A.; Puc, M. Pollen in bee products. Alergoprofil 2015, 11, 41–44. [Google Scholar]
- Saarinen, K.; Jantunen, J.; Haahtela, T. Birch pollen honey forbirch pollen allergy—A randomized controlled pilot study. Int. Arch. Allergy Immunol. 2011, 155, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Adekanmbi, O.; Ogundipe, O. Nectar sources for the honey bee (Apis mellifera adansonii) revealedby pollen content. Not. Bot. Horti Agrobot. Cluj 2009, 37, 211–217. [Google Scholar]
- Al-Suod, H.; Ratiu, I.A.; Ligor, M.; Ligor, T.; Buszewski, B. Determination of sugars and cyclitols isolated from various morphological parts of Medicago sativa L. J. Sep. Sci. 2018, 41, 1118–1128. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Ligor, M.; Ligor, T.; Railean-Plugaru, V.; Buszewski, B. Complex investigation of extraction techniques applied for cyclitols and sugars isolation from different species of Solidago genus. Electrophoresis 2018, 39, 1966–1974. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Ligor, M.; Ligor, T.; Krakowska, A.; Górecki, R.; Buszewski, B. Simultaneous determination of cyclitols and sugars following a comprehensive investigation of 40 plants. Food Anal. Methods 2019, 12, 1466–1478. [Google Scholar] [CrossRef] [Green Version]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [Green Version]
- EU Concil. Council directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities L 2002, 10, 47–52. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. QuEChERS approach is optimised and examined in detail for different matrices and pesticides. Molecules 2018, 23, 2009. [Google Scholar] [CrossRef] [Green Version]
- Rizzetti, T.M.; Kemmerich, M.; Martins, M.L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of a QuEChERS based method by means of centralcomposite design for pesticide multiresidue determination in orangejuice by UHPLC–MS/MS. Food Chem. 2016, 196, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef] [PubMed]
- Manav, O.G.; Zor, S.D.; Alpdogan, G. Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J. 2019, 144, 124–129. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. QSAR/QSPR models based on quantum chemistry for risk assessment of pesticides according to current European legislation. SAR QSAR Environ. Res. 2020, 31, 49–72. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Moran, B.; Sandın-Espana, P.; Lopez-Goti, C.; Alonso-Prados, J.L. Chapter 15, challenges of biopesticides under the european regulation (EC) No. 1107/2009: An overview of new trends in residue analysis. Stud. Nat. Prod. Chem. 2014, 43, 437–482. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Calvo, L.; Alonso-Prados, J.L.; Sandín-España, P. Photolysis of clethodim herbicide and a formulation in aquatic environments: Fate and ecotoxicity assessment of photoproducts by QSAR models. Sci. Total Environ. 2018, 615, 643–651. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Computational methodologies for the risk assessment of pesticides in the European Union. J. Agric. Food Chem. 2017, 65, 10. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L.; Sandín-España, P. Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009. TrAC Trends Anal. Chem. 2016, 80, 568–580. [Google Scholar] [CrossRef]
- Al-Suod, H.; Ratiu, I.A.; Krakowska-Sieprawska, A.; Lahuta, L.; Górecki, R.; Buszewski, B. Supercritical fluid extraction in isolation of cyclitols and sugars from chamomile flowers. J. Sep. Sci. 2019, 42, 3243–3252. [Google Scholar] [CrossRef]
- Al-Suod, H.; Ratiu, I.A.; Górecki, R.; Buszewski, B. Pressurized liquid extraction of cyclitols and sugars: Optimization of extraction parameters and selective separation. J. Sep. Sci. 2019, 42, 1265–1272. [Google Scholar] [CrossRef]
Name (Latin Name) and Picture | SEM | Elements & EDX Results [%] | |
---|---|---|---|
Buckwheat (Fagopyrum Mill.) | C | 26.54 | |
O | 68.53 | ||
Na | 0.45 | ||
Mg | 0.33 | ||
Si | 0.21 | ||
P | 0.72 | ||
S | 0.21 | ||
Cl | 0.01 | ||
K | 2.08 | ||
Ca | 0.98 | ||
Goldenrod (Solidagogigantea L.) | C | 29.86 | |
O | 68.03 | ||
Na | 0.02 | ||
Mg | 0.00 | ||
Si | 0.00 | ||
P | 0.34 | ||
S | 0.16 | ||
Cl | 0.14 | ||
K | 0.67 | ||
Ca | 0.79 | ||
Phacelia (Phacelia tanacetifolia Benth.) | C | 21.44 | |
O | 69.06 | ||
Na | 0.40 | ||
Mg | 0.59 | ||
Si | 0.69 | ||
P | 0.31 | ||
S | 0.55 | ||
Cl | 0.26 | ||
K | 5.21 | ||
Ca | 1.41 | ||
Rape (Brassica napus L. var. napus) | C | 25.13 | |
O | 70.91 | ||
Na | 0.69 | ||
Mg | 0.64 | ||
Si | - | ||
P | 0.47 | ||
S | 0.20 | ||
Cl | 0.16 | ||
K | 1.56 | ||
Ca | 0.23 |
Target | Structural Formula | Linearity [ng/mL] | Calibration Curve | R2 | LOD [ng/g] | LOQ [ng/g] | Recovery ± SD [%] (First Level: 120 & 300 ng/mL) | Recovery ± SD [%] (Second Level: 200 & 500 ng/mL) | |
---|---|---|---|---|---|---|---|---|---|
a | b | ||||||||
1 | 99.69–697.83 | 0.0346 | −0.0388 | 0.9995 | 65.2 | 197.6 | 86.17 ± 8.77 | 99.64 ± 5.61 | |
2 | 100.30–702.10 | 0.0442 | −0.4734 | 0.9994 | 63.1 | 191.1 | 101.71 ± 3.10 | 101.06 ± 3.04 | |
3 | 99.50–696.50 | 0.0474 | −0.0264 | 0.9993 | 64.7 | 195.9 | 98.34 ± 2.21 | 95.30 ± 5.82 | |
4 | 99.90–699.30 | 0.0533 | 0.4870 | 0.9996 | 60.8 | 184.3 | 100.62 ± 1.34 | 95.20 ± 5.56 | |
5 | 149.85–1748.25 | 0.0437 | −0.0067 | 0.9998 | 81.0 | 245.4 | 101.63 ± 0.90 | 101.60 ± 3.54 |
No | Honey | The Neonicotinoids Content in Honey [ng/g] | ||||
---|---|---|---|---|---|---|
Thiamethoxam | Clothianidin | Imidacloprid | Acetamiprid | Thiacloprid | ||
1 | Goldenrod (Poland) | Nd | <LOQ | <LOQ | nd | nd |
2 | Goldenrod (Poland) | <LOQ | nd | <LOQ | nd | nd |
3 | Goldenrod (Poland) | 254.97 ± 11.96 | nd | <LOQ | <LOQ | nd |
4 | Goldenrod (Poland) | <LOQ | <LOQ | nd | 242.82 ± 3.66 | nd |
5 | Phacelia (Poland) | <LOQ | nd | <LOQ | nd | <LOQ |
6 | Rape (Poland) | 368.26 ± 8.36 | nd | <LOQ | nd | nd |
7 | Rape (Poland) | <LOQ | nd | <LOQ | nd | <LOQ |
8 | Rape (Poland) | Nd | nd | nd | nd | nd |
9 | Rape (Romania) | Nd | nd | nd | nd | nd |
10 | Linden (Poland) | <LOQ | nd | <LOQ | nd | nd |
11 | Linden (Poland) | Nd | nd | nd | nd | 348.19 ± 8.30 |
12 | Linden (Poland) | Nd | nd | <LOQ | nd | nd |
13 | Linden (Poland) | Nd | nd | nd | <LOQ | <LOQ |
14 | Linden (Poland) | Nd | nd | nd | nd | nd |
15 | Multifloral (Poland) | 292.38 ± 16.67 | nd | nd | <LOQ | nd |
16 | Multifloral (Poland) | <LOQ | nd | <LOQ | nd | nd |
17 | Multifloral (Poland) | 353.17 ± 5.97 | nd | nd | nd | nd |
18 | Multifloral (Poland) | 591.28 ± 6.14 | nd | nd | nd | nd |
19 | Multifloral (Poland) | Nd | <LOQ | <LOQ | nd | nd |
20 | Multifloral (Poland) | Nd | nd | nd | nd | <LOQ |
21 | Multifloral (Romania) | Nd | <LOQ | nd | nd | nd |
22 | Multifloral (Czech Republic) | <LOQ | nd | nd | nd | nd |
23 | Multifloral (Russia) | Nd | nd | nd | nd | nd |
24 | Multifloral (Greece) | Nd | 253.39 ± 10.49 | nd | nd | nd |
25 | Multifloral (Brasil) | <LOQ | nd | nd | 1340.33 ± 27.50 | nd |
26 | Multifloral (USA) | Nd | nd | nd | Nd | nd |
27 | Multifloral (USA) | Nd | nd | nd | Nd | nd |
28 | Multifloral (Cameroon) | 297.39 ± 9.69 | <LOQ | nd | <LOQ | nd |
29 | Multifloral (France) | Nd | nd | nd | Nd | nd |
30 | Multifloral (Portugal) | Nd | <LOQ | nd | nd | <LOQ |
31 | Multifloral (Italy) | 400.69 ± 20.29 | 598.84 ± 18.43 | <LOQ | nd | nd |
32 | Multifloral (Turkey) | Nd | nd | nd | nd | nd |
33 | Buckwheat (Poland) | Nd | nd | nd | nd | nd |
34 | Buckwheat (Poland) | 494.47 ± 14.83 | nd | nd | nd | <LOQ |
35 | Buckwheat (Poland) | 261.85 ± 12.60 | nd | <LOQ | nd | nd |
36 | Buckwheat (Poland) | <LOQ | nd | nd | nd | <LOQ |
37 | Buckwheat (Poland) | 447.81 ± 4.52 | <LOQ | <LOQ | nd | <LOQ |
38 | Buckwheat (Poland) | <LOQ | nd | nd | nd | nd |
39 | Honeydew (Poland) | Nd | nd | nd | nd | <LOQ |
40 | Honeydew (Poland) | Nd | nd | nd | nd | nd |
41 | Honeydew (Poland) | <LOQ | <LOQ | nd | nd | nd |
42 | Raspberry (Poland) | 239.46 ± 28.96 | nd | <LOQ | nd | nd |
43 | Raspberry (Poland) | 652.42 ± 23.06 | nd | nd | <LOQ | 608.40 ± 11.60 |
44 | Sunflower (Poland) | Nd | nd | nd | Nd | nd |
45 | Sunflower (Bulgaria) | Nd | nd | nd | Nd | nd |
46 | Rosemary (Portugal) | <LOQ | nd | nd | Nd | nd |
47 | Bush (Australia, Tasmania) | presumably ≥ 1395.66 | 367.14 ± 17.29 | 624.91 ± 3.16 | 619.93 ± 26.41 | <LOQ |
48 | Acacia (Romania) | Nd | nd | nd | Nd | nd |
49 | Acacia (Poland) | Nd | nd | nd | nd | nd |
50 | Acacia (Poland) | <LOQ | nd | nd | nd | nd |
51 | Leatherwood (Australia, Tasmania) | presumably ≥ 1395.66 | <LOQ | <LOQ | <LOQ | <LOQ |
52 | Clover (Australia, Tasmania) | presumably ≥ 1395.66 | nd | nd | nd | <LOQ |
53 | Foresthoney (Portugal, Madera) | <LOQ | <LOQ | nd | nd | nd |
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligor, M.; Bukowska, M.; Ratiu, I.-A.; Gadzała-Kopciuch, R.; Buszewski, B. Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules 2020, 25, 5817. https://doi.org/10.3390/molecules25245817
Ligor M, Bukowska M, Ratiu I-A, Gadzała-Kopciuch R, Buszewski B. Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules. 2020; 25(24):5817. https://doi.org/10.3390/molecules25245817
Chicago/Turabian StyleLigor, Magdalena, Małgorzata Bukowska, Ileana-Andreea Ratiu, Renata Gadzała-Kopciuch, and Bogusław Buszewski. 2020. "Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries" Molecules 25, no. 24: 5817. https://doi.org/10.3390/molecules25245817
APA StyleLigor, M., Bukowska, M., Ratiu, I. -A., Gadzała-Kopciuch, R., & Buszewski, B. (2020). Determination of Neonicotinoids in Honey Samples Originated from Poland and Other World Countries. Molecules, 25(24), 5817. https://doi.org/10.3390/molecules25245817