Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. α-Glucosidase Inhibition (AGI) of the Plant Extract
2.2. Multivariate Data Analysis
2.3. Identification of Putative Compounds
2.4. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Sample Collection
4.3. Preparation of P. malayana Leaves Extracts
4.4. AGI Assay
4.5. LCMS-QTOF Analysis
4.6. Molecular Docking
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyle, J.P.; Honeycutt, A.A.; Narayan, K.M.V.; Hoerger, T.J.; Geiss, L.S.; Chen, H.; Thompson, T.J. Projection of Diabetes Burden Through 2050. Diabetes Care 2001, 24, 1936–1940. [Google Scholar] [CrossRef] [Green Version]
- Islam, D.; Huque, A.; Mohanta, L.C.; Das, S.K.; Sultana, A. Hypoglycemic and Hypolipidemic Effects of Nelumbo Nucifera Flower in Long-Evans Rats. J. Herbmed Pharmacol. 2018, 7, 148–154. [Google Scholar] [CrossRef]
- Rahimi-Madiseh, M.; Karimian, P.; Kafeshani, M.; Rafieian-Kopaei, M. The Effects of Ethanol Extract of Berberis Vulgaris Fruit on Histopathological Changes and Biochemical Markers of the Liver Damage in Diabetic Rats. Iran. J. Basic Med. Sci. 2017, 20, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.; Maideen, P.; Balasubramaniam, R. Pharmacologically Relevant Drug Interactions of Sulfonylurea Antidiabetics with Common Herbs. J. Herbmed Pharmacol. 2018, 7, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.E.; Stoebner-May, D.G.; Ostir, G.V.; Al, S.; Peek, M.K.; Markides, K.; Ottenbacher, K.J. Health Related Quality of Life in Older Mexican Americans with Diabetes: A Cross-Sectional Study. Health Qual. Life Outcomes 2007, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Haque, N.; Salma, U.; Nurunnabi, T.R.; Uddin, M.J.; Jahangir, M.F.K.; Islam, S.M.Z.; Kamruzzaman, M. Management of Type 2 Diabetes Mellitus by Lifestyle, Diet and Medicinal Plants. Pakistan J. Biol. Sci. 2011, 14, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Gro, J.K.; Yada, S.; Vats, V. Medicinal Plants of India with Anti-Diabetic Potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar]
- Jung, M.; Park, M.; Lee, H.C.; Kang, Y.; Kang, E.S.; Kim, K. Antidiabetic Agents from Medicinal Plants. Curr. Med. Chem. 2006, 13, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes:a systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.S.; Kavrekar, V.; Mishra, A. In Vitro Studies on Alpha Amylase and Alpha Glucosidase Inhibitory Activities of Selected Plant Extracts. Eur. J. Exp. Biol. 2013, 3, 128–132. [Google Scholar]
- Hadi, S.; Asnawati, D.; Ersalena, V.F.; Azwari, A.; Rahmawati, K.P. Characterization of Alkaloids From The Leaves of Psychotria Malayana Jack of Lombok Island on The Basis of Gas Chromatography-Mass Spectroscopy. J. Pure Appl. Chem. Res. 2014, 3, 108–113. [Google Scholar] [CrossRef]
- Benchoula, K.; Khatib, A.; Quzwain, F.M.C.; Che Mohamad, C.A.; Wan Sulaiman, W.M.A.; Wahab, R.A.; Ahmed, Q.U.; Ghaffar, M.A.; Saiman, M.Z.; Alajmi, M.F.; et al. Optimization of Hyperglycemic Induction in Zebrafish and Evaluation of Its Blood Glucose Level and Metabolite Fingerprint Treated with Psychotria Malayana Jack Leaf Extract. Molecules 2019, 24, 1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Situmorang, R.O.P.; Harianja, A.H.; Silalahi, J. Karo’s Local Wisdom: The Use of Woody Plants for Traditional Diabetic Medicines. Indones. J. For. Res. 2015, 2, 121–130. [Google Scholar] [CrossRef]
- Zhou, B.; Xiao, J.F.; Tuli, L.; Ressom, H.W. LC-MS-Based Metabolomics. Mol. Biosyst. 2012, 8, 470–481. [Google Scholar] [CrossRef] [Green Version]
- D’Urso, G.; Pizza, C.; Piacente, S.; Montoro, P. Combination of LC–MS Based Metabolomics and Antioxidant Activity for Evaluation of Bioactive Compounds in Fragaria Vesca Leaves from Italy. J. Pharm. Biomed. Anal. 2018, 150, 233–240. [Google Scholar] [CrossRef]
- Azizan, K.A.; Ibrahim, S.; Ghani, N.H.A.; Nawawi, M.F. LC-MS Based Metabolomics Analysis to Identify Potential Allelochemicals in Wedelia Trilobata. Rec. Nat. Prod. 2016, 10, 788–793. [Google Scholar]
- Murugesu, S.; Ibrahim, Z.; Uddin, Q.; Uzir, B.F.; Nik, N.I.; Perumal, V.; Abas, F.; Shaari, K.; Khatib, A. Identification of α-Glucosidase Inhibitors from Clinacanthus Nutans Leaf Extract Using Liquid Chromatography-Mass Spectrometry-Based Metabolomics and Protein-Ligand Interaction with Molecular Docking. J. Pharm. Anal. 2018. [Google Scholar] [CrossRef]
- D’urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; de Vos, R.C.H. Identification of Bioactive Phytochemicals in Mulberries. Metabolites 2020, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Mahmod, I.I.; Ismail, I.S.; Alitheen, N.B.; Normi, Y.M.; Abas, F.; Khatib, A.; Rudiyanto; Latip, J. NMR and LCMS Analytical Platforms Exhibited the Nephroprotective Effect of Clinacanthus Nutans in Cisplatin-Induced Nephrotoxicity in the in Vitro Condition. BMC Complement. Med. Ther. 2020, 20, 1–18. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wu, Z.Y.; Zhang, H.; Yin, S.J.; Xia, F.B.; Zhang, Q.; Wan, J.B.; Gao, J.L.; Yang, F.Q. LC-MS-Based Multivariate Statistical Analysis for the Screening of Potential Thrombin/Factor Xa Inhibitors from Radix Salvia Miltiorrhiza. Chin. Med. 2020, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Wu, Z.Y.; Xia, F.B.; Zhang, H.; Wang, X.; Gao, J.L.; Yang, F.Q.; Wan, J.B. Characterization of Thrombin/Factor Xa Inhibitors in Rhizoma Chuanxiong through UPLC-MS-Based Multivariate Statistical Analysis. Chin. Med. 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Du, C.; Li, Z.; Zhang, M.; Li, J.; Jia, J.; Li, A.; Qin, X.; Song, Q. Comparing the Antidiabetic Effects and Chemical Profiles of Raw and Fermented Chinese Ge-Gen-Qin-Lian Decoction by Integrating Untargeted Metabolomics and Targeted Analysis. Chin. Med. 2018, 13, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The Applications and Features of Liquid Chromatography-Mass Spectrometry in the Analysis of Traditional Chinese Medicine. Evid. Based Complement. Altern. Med. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kind, T.; Fiehn, O. Advances in Structure Elucidation of Small Molecules Using Mass Spectrometry. Bioanal. Rev. 2010, 2, 23–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hombalimath, V.S.; Shet, A.R. In-Silico Analysis for Predicting Protein Ligand Interaction for Snake Venom Protein. J. Adv. Bioinforma. Appl. Res. 2012, 3, 345–356. [Google Scholar]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi- and Megavariate Data Analysis Basic Principles and Applications, 2nd ed.; Umetrics Academy: Umea, Sweden, 2006. [Google Scholar]
- Sutradhar, R.K.; Matior Rahman, A.K.M.; Ahmad, M.; Bachar, S.C.; Saha, A.; Guha, S.K. Bioactive Alkaloid from Sida Cordifolia Linn. with Analgesic and Anti-Inflammatory Activities. Iran. J. Pharmacol. Ther. 2006, 5, 175–178. [Google Scholar]
- Sutradhar, R.K.; Rahman, A.K.M.M.; Ahmad, M.U.; Saha, K. Alkaloids of Sida cordifolia L. Indian J. Chem. 2007, 46B, 1896–1900. [Google Scholar]
- Salles, C.; Jallageas, J.C.; Crouzet, J.C. HPLC Separation of Fruit Diastereoisomeric Monoterpenyl Glycosides. J. Essent. Oil Res. 1993, 5, 381–390. [Google Scholar] [CrossRef]
- Ohta, T.; Omori, T.; Shimojo, H.; Hashimoto, K.; Samuta, T.; Ohba, T. Identification of Monoterpene Alcohol β-Glucosides in Sweet Potatoes and Purification of a Shiro-Koji β-Glucosidase. Agric. Biol. Chem. 1991, 55, 1811–1816. [Google Scholar] [CrossRef]
- Nhiem, N.X.; Kim, K.C.; Kim, A.D.; Hyun, J.W.; Kang, H.K.; Van Kiem, P.; Van Minh, C.; Thu, V.K.; Tai, B.H.; Kim, J.A.; et al. Phenylpropanoids from the Leaves of Acanthopanax Koreanum and Their Antioxidant Activity. J. Asian Nat. Prod. Res. 2011, 13, 56–61. [Google Scholar] [CrossRef]
- Silchenko, A.S.; Kalinovsky, A.I.; Ponomarenko, L.P.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Gorovoy, P.G.; Kim, N.Y.; Stonik, V.A. Structures of Eremophilane-Type Sesquiterpene Glucosides, Alticolosides A-G, from the Far Eastern Endemic Ligularia Alticola Worosch. Phytochemistry 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kherkhache, H.; Benabdelaziz, I.; Silva, A.M.S.; Lahrech, M.B.; Benalia, M.; Haba, H. A New Indole Alkaloid, Antioxidant and Antibacterial Activities of Crude Extracts from Saccocalyx Satureioides. Nat. Prod. Res. 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Li, X.; Dunbar, D.C.; Elsohly, M.A.; Khan, I.A. Antimalarial (+)-Trans-Hexahydrodibenzopyran Derivatives from Machaerium Multiflorum. J. Nat. Prod. 2001, 50, 6–9. [Google Scholar]
- Muhammad, I.; Li, X.C.; Jacob, M.R.; Tekwani, B.L.; Dunbar, D.C.; Ferreira, D. Antimicrobial and Antiparasitic (+)-Trans-Hexahydrodibenzopyrans and Analogues from Machaerium Multiflorum. J. Nat. Prod. 2003, 66, 804–809. [Google Scholar] [CrossRef]
- Wei, S.; Abas, F.; Wai, K.; Yusoff, K. In Vitro and in Silico Evaluations of Diarylpentanoid Series as α-Glucosidase Inhibitor. Bioorg. Med. Chem. Lett. 2018, 28, 302–309. [Google Scholar] [CrossRef]
- Kidane, Y.; Bokrezion, T.; Mebrahtu, J.; Mehari, M.; Gebreab, Y.B.; Fessehaye, N.; Achila, O.O. In Vitro Inhibition of α-Amylase and α-Glucosidase by Extracts from Psiadia Punctulata and Meriandra Bengalensis. Evid. Based Complement. Altern. Med. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In Vitro Evaluation of the α-Glucosidase Inhibitory Potential of Methanolic Extracts of Traditionally Used Anti-diabetic Plants. BMC Complement. Altern. Med. 2019, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chatha, S.A.S.; Anwar, F.; Manzoor, M.; Bajwa, J.U.R. Evaluation of the Antioxidant Activity of Rice Bran Extracts Using Different Antioxidant Assays. Grasas Aceites 2006, 57, 328–335. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa Oleifera Lam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Anwar, F.; Jamil, A.; Iqbal, S.; Sheikh, M.A. Antioxidant Activity of Various Plant Extracts under Ambient and Accelerated Storage of Sunflower Oil. Grasas Aceites 2006, 57, 189–197. [Google Scholar] [CrossRef]
- Nipun, T.S.; Khatib, A.; Ahmed, Q.U.; Redzwan, I.E.; Ibrahim, Z.; Khan, A.Y.F.; Primaharinastiti, R.; Khalifa, S.A.M.; El-Seedi, H.R. Alpha-Glucosidase Inhibitory Effect of Psychotria Malayana Jack Leaf: A Rapid Analysis Using Infrared Fingerprinting. Molecules 2020, 25, 4161. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.S.M.; Siddiqui, M.J.; Mat So’ad, S.Z.; Roheem, F.O.; Saidi-Besbes, S.; Khatib, A. Correlation of FT-IR Fingerprint and α-Glucosidase Inhibitory Activity of Salak (Salacca Zalacca) Fruit Extracts Utilizing Orthogonal Partial Least Square. Molecules 2018, 23, 1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nokhala, A.; Ahmed, Q.U.; Saleh, M.S.M.; Nipun, T.S.; Khan, A.Y.F.; Siddiqui, M.J. Characterization of α-Glucosidase Inhibitory Activity of Tetracera Scandens Leaves by Fourier Transform Infrared Spectroscopy-Based Metabolomics. Adv. Tradit. Med. 2020, 20, 169–180. [Google Scholar] [CrossRef]
- Sharif, M.F.; Bennett, M.T. The Effect of Different Methods and Solvents on the Extraction of of Polyphenols in Ginger (Zingiber Officinale). J. Teknol. 2016, 78, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Choubey, S.; Singour, P.K.; Rajak, H.; Pawar, R.S. Sida Cordifolia (Linn)—An Overview. J. Appl. Pharm. Sci. 2011, 1, 23–31. [Google Scholar]
- Momin, M.A.M.; Bellah, S.F.; Rahman, S.M.R.; Rahman, A.A.; Murshid, G.M.M.; Emran, T.B. Phytopharmacological Evaluation of Ethanol Extract of Sida Cordifolia L. Roots. Asian Pac. J. Trop. Biomed. 2014, 4, 18–24. [Google Scholar] [CrossRef]
- Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Crystal Structures of Isomaltase from Saccharomyces Cerevisiae and in Complex with Its Competitive Inhibitor Maltose. FEBS J. 2010, 277, 4205–4214. [Google Scholar] [CrossRef]
- Nokhala, A.; Siddiqui, M.J.; Ahmed, Q.U.; Bustamam, M.S.A.; Zakaria, Z.A. Investigation of A-glucosidase Inhibitory Metabolites from Tetracera Scandens Leaves by GC–MS Metabolite Profiling and Docking Studies. Biomolecules 2020, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Javadi, N.; Abas, F.; Hamid, A.A.; Simoh, S.; Shaari, K.; Ismail, I.S.; Mediani, A.; Khatib, A. GC-MS-Based Metabolite Profiling of Cosmos Caudatus Leaves Possessing Alpha-Glucosidase Inhibitory Activity. J. Food Sci. 2014, 79, C1130–C1136. [Google Scholar] [CrossRef]
- Dhanawansa, R.; Faridmoayer, A.; van der Merwe, G.; Li, Y.X.; Scaman, C.H. Overexpression, Purification, and Partial Characterization of Saccharomyces Cerevisiae Processing Alpha Glucosidase I. Glycobiology 2002, 12, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Pluskal, T.; Castillo, S.; Villar-briones, A.; Ore, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry- Based Molecular Profile Data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. International Journal of Biological Macromolecules Inhibitory Effect of Phloretin on Glucosidase: Kinetics, Interaction Mechanism and Molecular Docking. Int. J. Biol. Macromol. 2017, 95, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Imran, S.; Taha, M.; Ismail, H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Wahab, H.; Khan, K.M. Synthesis, In Vitro and Docking Studies of New Flavone Ethers as α-Glucosidase Inhibitors. Chem. Biol. Drug Des. 2016, 87, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Adnan, S.; Shah, A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Mohammed, K. Synthesis, α-Glucosidase Inhibition and Molecular Docking Study of Coumarin Based Derivatives. Bioorg. Chem. 2018, 77, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Lestari, W.; Dewi, R.T.; Broto, L.; Kardono, S.; Yanuar, A. Docking Sulochrin and Its Derivative as α-Glucosidase Inhibitors of Saccharomyces Cerevisiae. Indones. J. Chem. 2017, 17, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase Inhibition by Luteolin: Kinetics, Interaction and Molecular Docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.W.; Awin, T.; Munirah, S.; Faudzi, M.; Shaari, M.M.K.; Abas, F. Synthesis and Biological Evaluation of Asymmetrical Diarylpentanoids as Antiinflammatory, Anti-α-Glucosidase, and Antioxidant Agents. Med. Chem. Res. 2019, 28, 2002–2009. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; Mccammon, J.A.; Baker, N.A. PDB2PQR: An Automated Pipeline for the Setup of Poisson—Boltzmann Electrostatics Calculations. Nucleic Acids Res. 2004, 32, 665–667. [Google Scholar] [CrossRef]
Compound | M + H | MS2 Fragments Ion | Tentative Metabolites | Reference |
---|---|---|---|---|
1 | 315.1775 (C19H27N2O2) | [M-CH2]+ at m/z 300, [M-CH3]+ at m/z 299, [M-CH5]+ at m/z 297, [M-C2H4]+ at m/z 286, [M-CH3O]+ at m/z 283, [M-CH4O]+ at m/z 282, [M-C4H2]+ at m/z 264, [M-C4H9]+ at m/z 257, [M-C4H9O]+ at m/z 241, [M-C6H3]+ at m/z 239, [M-C5H11O]+ at m/z 227, [M-C7H15O]+ at m/z 199, [M-C7H13O2]+ at m/z 185, [M-C9H19O]+ at m/z 171, [M-C10H21O]+ at m/z 157, [M-C12H15O]+ at m/z 139, [M-C11H18O2]+ at m/z 132, [M-C12H17O2]+ at m/z 121, [M-C14H21O2]+ at m/z 93, [M-C13H19N2O2]+ at m/z 79, [M-C17H23N2O2]+ at m/z 27 | 5′-hydroxymethyl-1′-(1, 2, 3, 9-tetrahydro-pyrrolo (2, 1-b) quinazolin-1-yl)-heptan-1′-one | [27,28] |
2 | 317.2882 (C16H29O6) | [M-HO]+ at m/z 299, [M-H3O2]+ at m/z 281, [M-CH3O2]+ at m/z 269, [M-CH5O3]+ at m/z 251, [M-C4H5]+ at m/z 263, [M-C9H17O6]+ at m/z 95, [M-C10H19O6]+ at m/z 81, [M-C11H19O6]+ at m/z 69, [M-C11H21O6]+ at m/z 67, [M-C14H23O4]+ at m/z 61, [M-C14H24O4]+ at m/z 60 | α-terpinyl-β-glucoside | [29,30,31,32,33] |
3 | 349.2127 (C24H29O2) | [M-HO]+ at m/z 331, [M-H3O2]+ at m/z 313, [M-C3H3]+ at m/z 309, [M-C4H5]+ at m/z 295, [M-C5H7]+ at m/z 281, [M-C6H9]+ at m/z 267, [M-C10H17]+ at m/z 211, [M-C17H14O]+ at m/z 114 | machaeridiol-A | [34,35] |
Compound | Binding Affinity, kcal/mol |
---|---|
Control ligand (ADG) | −6.0 |
Quercetin | −8.4 |
1 | −8.3 |
2 | −7.6 |
3 | −10.0 |
Compound Structure | Interacting Amino Acid Residues | Bond Type | Bond Distance(Å) |
---|---|---|---|
Compound 1 | ASP352 | Hydrogen bonding | 2.08 |
ARG213 | Hydrogen bonding | 2.82 | |
GLH277 | Hydrogen bonding | 2.60 | |
ARG442 | Hydrogen bonding | 2.64 | |
TYR72 | Pi-Alkyl | 4.49 | |
PHE178 | Pi-Sigma | 3.68 | |
PHE303 | Pi-Alkyl | 4.76 | |
Compound 2 | GLN279 | Hydrogen bonding | 2.36 |
HIE280 | Hydrogen bonding | 2.28 2.45 | |
GLU411 | Hydrogen bonding | 3.39 | |
PHE303 | Pi-Alkyl | 4.59 | |
PHE178 | Pi-Alkyl | 4.82 5.25 | |
TYR158 | Pi-Alkyl | 5.24 | |
Compound 3 | GLN279 | Hydrogen bonding | 2.58 |
HIE280 | Hydrogen bonding | 2.78 | |
ASP352 | Pi-Anion | 4.50 | |
ASH215 | Pi-Anion | 4.80 | |
ARG442 | Pi-Cation | 3.66 | |
TYR72 | Pi-Pi T-shaped | 5.30 | |
TYR158 | Pi-Pi T-shaped Pi-Alkyl Pi-Alkyl | 4.85 4.16 4.09 | |
ARG315 | Alkyl | 4.50 3.84 |
Parameters | Details |
---|---|
Baseline correction | Mass Spectrometry (MS) level = 1 m/z bin width = 1 Asymmetric baseline corrector (smoothing = 100,000, asymmetry = 0.5) |
Mass detection | Mass detector = centroid (noise level = 200) |
Chromatogram builder | Min time span = 0.2 min Min height = 200 m/z tolerance = 1.0 mz or 2500 ppm |
Peak detection | Filter width = 11 |
Isotopic peaks grouper | m/z tolerance = 1.0 mz or 2500 ppm Retention time (RT) tolerance = 0.2 min Monotonic shape Maximum charge = 1 |
Duplicate peak filter | m/z tolerance = 1.0 mz or 2500 ppm RT tolerance = 0.2 min |
Normalization | Linear Normalization Peak measurement type = peak area |
Alignment (Join aligner) | m/z tolerance = 1.0 or 2500 ppm Weight for m/z = 85 RT tolerance = 0.2 min Weight for RT = 15 Require same charge state |
Gap filling | Same RT and m/z range gap filler m/z tolerance = 1.0 or 2500 ppm |
Sample Availability: Herbal samples are kept in Kulliyyah of Pharmacy’s herbarium IIUM Kuantan, and available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nipun, T.S.; Khatib, A.; Ibrahim, Z.; Ahmed, Q.U.; Redzwan, I.E.; Saiman, M.Z.; Supandi, F.; Primaharinastiti, R.; El-Seedi, H.R. Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking. Molecules 2020, 25, 5885. https://doi.org/10.3390/molecules25245885
Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Saiman MZ, Supandi F, Primaharinastiti R, El-Seedi HR. Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking. Molecules. 2020; 25(24):5885. https://doi.org/10.3390/molecules25245885
Chicago/Turabian StyleNipun, Tanzina Sharmin, Alfi Khatib, Zalikha Ibrahim, Qamar Uddin Ahmed, Irna Elina Redzwan, Mohd Zuwairi Saiman, Farahaniza Supandi, Riesta Primaharinastiti, and Hesham R. El-Seedi. 2020. "Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking" Molecules 25, no. 24: 5885. https://doi.org/10.3390/molecules25245885
APA StyleNipun, T. S., Khatib, A., Ibrahim, Z., Ahmed, Q. U., Redzwan, I. E., Saiman, M. Z., Supandi, F., Primaharinastiti, R., & El-Seedi, H. R. (2020). Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking. Molecules, 25(24), 5885. https://doi.org/10.3390/molecules25245885