In Vitro Antifungal Activity and Mechanism of Ag3PW12O40 Composites against Candida Species
Abstract
:1. Introduction
2. Results
2.1. Characterization of Ag3PW12O40 Composites
2.2. Antifungal Susceptibility Testing
2.3. Inhibitory Effect of Ag3PW12O40 Composites on C. albicans HL 963
2.4. Growth Inhibition Curves
2.5. LIVE/DEAD Assays
2.6. Assessment of Ergosterol Content
2.7. The Level of Ergosterol Biosynthesis-Related Genes
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Ag3PW12O40 Composites
4.3. Physical Characterization of Ag3PW12O40 Composites
4.4. Isolation and Culture Conditions of Fungi
4.5. Determination of MIC of Ag3PW12O40 Composites
4.6. MTS-Reduction Assay
4.7. Growth Inhibition Curves
4.8. LIVE/DEAD Assay
4.9. Assessment of Ergosterol Content
4.10. Real-Time PCR
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zirkel, J.; Klinker, H.; Kuhn, A.; Abele-Horn, M.; Tappe, D.; Turnwald, D.; Einsele, H.; Heinz, W.J. Epidemiology of Candida blood stream infections in patients with hematological malignancies or solid tumors. Med. Mycol. 2012, 50, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Dong, H.-H.; Wang, Y.-H.; Wang, T.-Y.; Yan, Z.-H.; Yan, F.; Zhang, D.-Z.; Cao, Y.-Y.; Jin, Y.-S. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. Medchemcomm 2017, 8, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.N.; Yang, L.; Wu, S.; Kennelly, E.J.; Lipke, P.N. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms. Antimicrob. Agents Chemother. 2015, 59, 6032–6038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.-D.; Chai, D.; Huang, X.-W.; Guan, S.-X.; Du, J.; Zhang, H.-Y.; Sun, Y.; Jiang, Y.-Y. Potent In Vitro Synergism of Fluconazole and Osthole against Fluconazole-Resistant Candida albicans. Antimicrob. Agents Chemother. 2017, 61, e00436-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Biswas, D.; Kotwal, A.; Thakuria, B.; Kakati, B.; Chauhan, B.S.; Patras, A. Ibuprofen-Mediated Reversal of Fluconazole Resistance in Clinical Isolates of Candida. J. Clin. Diagn. Res. 2015, 9, DC20–DC22. [Google Scholar] [CrossRef] [PubMed]
- Matthaiou, D.K.; Christodoulopoulou, T.; Dimopoulos, G. How to treat fungal infections in ICU patients. BMC Infect. Dis. 2015, 15, 205. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Lass-Floerl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef]
- Niimi, M.; Firth, N.A.; Cannon, R.D. Antifungal drug resistance of oral fungi. Odontology 2010, 98, 15–25. [Google Scholar] [CrossRef]
- Panacek, A.; Kolar, M.; Vecerova, R.; Prucek, R.; Soukupova, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvitek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef]
- Kim, K.-J.; Sung, W.S.; Suh, B.K.; Moon, S.-K.; Choi, J.-S.; Kim, J.G.; Lee, D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009, 22, 235–242. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; McLean, J.E.; Britt, D.W.; Anderson, A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 2013, 26, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.N.J.; Crespo-Biel, O.; van den Bosch, E.E.M.; Dias, A.A.; Knetsch, M.L.W.; Aldenhoff, Y.B.J.; van der Veen, F.H.; Maessen, J.G.; Stobberingh, E.E.; Koole, L.H. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 2009, 30, 3682–3690. [Google Scholar] [CrossRef]
- Zhang, L.; Schmitt, W. From Platonic Templates to Archimedean Solids: Successive Construction of Nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} Polyoxovanadate Cages. J. Am. Chem. Soc. 2011, 133, 11240–11248. [Google Scholar] [CrossRef] [PubMed]
- Procissi, D.; Shastri, A.; Rousochatzakis, I.; Al Rifai, M.; Kogerler, P.; Luban, M.; Suh, B.J.; Borsa, F. Magnetic susceptibility and spin dynamics of a polyoxovanadate cluster: A proton NMR study of a model spin tetramer. Phys. Rev. B 2004, 69, 094436. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, J.C. Thirty years through vanadium chemistry. J. Inorg. Biochem. 2015, 147, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Li, J.K.; Hu, C.W. Progress in Polyoxovanadate Chemistry. Chin. J. Inorg. Chem. 2015, 31, 1705–1725. [Google Scholar]
- Hayashi, Y. Hetero and lacunary polyoxovanadate chemistry: Synthesis, reactivity and structural aspects. Coord. Chem. Rev. 2011, 255, 2270–2280. [Google Scholar] [CrossRef] [Green Version]
- Long, D.L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121. [Google Scholar] [CrossRef]
- Fukuda, N.; Yamase, T.; Tajima, Y. Inhibitory effect of polyoxotungstates on the production of penicillin-binding proteins and beta-lactamase against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 1999, 22, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Shiota, S.; Shimizu, M.; Sugiyama, J.; Morita, Y.; Mizushima, T.; Tsuchiya, T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2004, 48, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gong, H.; Qi, Y.; Li, J.; Ji, X.; Sun, J.; Tian, R.; Bao, H.; Song, X.; Chen, Q.; et al. In vitro and in vivo antifungal activities and mechanism of heteropolytungstates against Candida species. Sci. Rep. 2017, 7, 16942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Qi, Y.; Guo, S.; Hao, K.; Zhao, M.; Guo, N. Effect of AgWPA nanoparticles on the inhibition of Staphylococcus aureus growth in biofilms. Food Control 2019, 100, 240–246. [Google Scholar] [CrossRef]
- Gurgul, J.; Zimowska, M.; Mucha, D.; Socha, R.P.; Matachowski, L. The influence of surface composition of Ag3PW12O40 and Ag3PMo12O40 salts on their catalytic activity in dehydration of ethanol. J. Mol. Catal. A Chem. 2011, 351, 1–10. [Google Scholar] [CrossRef]
- Inoue, M.; Segawa, K.; Matsunaga, S.; Matsumoto, N.; Oda, M.; Yamase, T. Antibacterial activity of highly negative charged polyoxotungstates, K-27 KAs4W40O140 and K-18 KSb9W21O86, and Keggin-structural polyoxotungstates against Helicobacter pylori. J. Inorg. Biochem. 2005, 99, 1023–1031. [Google Scholar] [CrossRef]
- Inoue, M.; Suzuki, T.; Fujita, Y.; Oda, M.; Matsumoto, N.; Yamase, T. Enhancement of antibacterial activity of beta-lactam antibiotics by P2W18O62 (6-), SiMo12O40 (4-), and PTi2W10O40 (7-) against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J. Inorg. Biochem. 2006, 100, 1225–1233. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, J.; Ma, J.; Liu, J. Synthesis and biological activity of organothiophosphoryl polyoxotungstates. Met. Based Drugs 2002, 8, 257–262. [Google Scholar] [CrossRef]
- Chen, B.-N.; Feng, Z.-G.; Wang, L. Antibacterial Activities of Polyoxometalates Containing Silicon. Chem. J. Chin. Univ. Chin. 2011, 32, 1033–1036. [Google Scholar]
- Inouye, Y.; Tokutake, Y.; Yoshida, T.; Yamamoto, A.; Yamase, T.; Nakamura, S. Antiviral activity of polyoxomolybdoeuropate PM-104 against human immunodeficiency virus type 1. Chem. Pharm. Bull. 1991, 39, 1638–1640. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.S.; Judd, D.A.; Hill, C.L.; Schinazi, R.F. Synthesis, characterization, and biological activity of a new potent class of anti-HIV agents, the peroxoniobium-substituted heteropolytungstates. J. Med. Chem. 1994, 37, 816–820. [Google Scholar] [CrossRef]
- Take, Y.; Tokutake, Y.; Inouye, Y.; Yoshida, T.; Yamamoto, A.; Yamase, T.; Nakamura, S. Inhibition of proliferation of human immunodeficiency virus type 1 by novel heteropolyoxotungstates in vitro. Antivir. Res. 1991, 15, 113–124. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, L.; Zhou, X.; Jaiseng, W.; Zhang, B.; Takami, T.; Kuno, T. A Genomewide Screen in Schizosaccharomyces pombe for Genes Affecting the Sensitivity of Antifungal Drugs That Target Ergosterol Biosynthesis. Antimicrob. Agents Chemother. 2012, 56, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; De Carolis, E.; Torelli, R.; Fadda Sanguinetti, G.; Sanglard, D.; Posteraro, B. Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A. BMC Microbioloy 2011, 11, 97. [Google Scholar]
- De Backer, M.D.; Ilyina, T.; Ma, X.J.; Vandoninck, S.; Luyten, W.H.; Vanden Bossche, H. Genomic profling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob. Agents Chemother. 2001, 45, 1660–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holclajtner-Antunovic, I.; Bajuk-Bogdanovic, D.; Popa, A.; Vasiljevic, B.N.; Krstic, J.; Mentus, S.; Uskokovic-Markovic, S. Structural, morphological and catalytic characterization of neutral Ag salt of 12-tungstophosphoric acid: Influence of preparation conditions. Appl. Surf. Sci. 2015, 328, 466–474. [Google Scholar] [CrossRef]
- Da Silva Barros, M.E.; de Assis Santos, D.; Hamdan, J.S. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J. Med. Microbiol. 2007, 56, 514–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, L.; Liao, Y.; Yang, S.; Yang, R. In Vitro Activity of Berberine Alone and in Combination with Antifungal Drugs Against Planktonic Forms and Biofilms of Trichosporon Asahii. Mycopathologia 2017, 182, 829–837. [Google Scholar] [CrossRef]
- Cao, Y.Y.; Cao, Y.B.; Xu, Z.; Ying, K.; Li, Y.; Xie, Y.; Zhu, Z.Y.; Chen, W.S.; Jiang, Y.Y. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 2005, 49, 584–589. [Google Scholar] [CrossRef] [Green Version]
Strains | MIC80 | MIC50 | ||
---|---|---|---|---|
FLC | Ag3PW12O40 | FLC | Ag3PW12O40 | |
C.albicans | ||||
HL 973 | 64 | 128 | 16 | 16 |
HL 963 | 64 | 8 | 4 | 2–4 |
HL 996 | 2 | 8 | 1 | 4 |
HL 27 | 2 | 8 | 1 | 4–8 |
HL3929 | >256 | 64 | >256 | 32 |
HL3973 | 16 | 32 | 8 | 16 |
HL3863 | 16 | 64 | 8 | 16 |
HL3084 | 16 | 64 | 4 | 4 |
HL3961 | 4 | 8 | 2 | 4 |
HL17034 | 8 | 64 | 4 | 32 |
HL3916 | 128 | 8 | 8 | 4–8 |
HL3974 | 16 | 4 | 0.5 | 2–4 |
HL3970 | 16 | 64 | 0.5 | 8 |
HL3968 | 32 | 32 | 4 | 8 |
ATCC 90028 | 1 | 16 | 0.25 | 8–16 |
C. glabrata | ||||
HL 981 | >256 | 8 | 128–256 | 4 |
C. krusei | ||||
HL 946 | >256 | 8 | >256 | 2 |
C.parapsilosis | ||||
ATCC 22019 | 2 | 16 | 1 | 4 |
C. tropicalis | ||||
ATCC 750 | 4 | 4–8 | 4 | 2 |
Concentration (μg/L) | Ergosterol Content (mg/mL) | |
---|---|---|
Control | - | 2.20 ± 0.153 |
FLC | 8 | 0.10 ± 0.003 * |
Ag3PW12O40 | 32 | 0.79 ± 0.118 * |
Gene | Primer Sequence (5′-3′) | Size (bp) |
---|---|---|
18S | F: TCTTTCTTGATTTTGTGGGTGG | 150 |
R: TCGATAGTCCCTCTAAGAAGTG | ||
ERG1 | F: AAGGGCAAAGGTCATGTGTT | 121 |
R: CGTTAGCAGCAGAAGGAGGT | ||
ERG7 | F: TTATGCGTCGATGTTTGCAT | 117 |
R: CCACCGTCTGGAAGTTGTTT | ||
ERG11 | F: TTTGACCGTTCATTTGCTCA | 110 |
R: GCAGCATCACGTCTCCAATA | ||
ERG27 | F: TTGCTGCTGCTTTAGGTCAA | 110 |
R: GTCCAGACCAGTGCTGTCAA | ||
ERG28 | F: GCAAGAACTTTTGGAACTTGG | 117 |
R: TGCAGCAATAGCAAATGTGA |
Sample Availability: Samples of the compounds are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, T.; Guo, S.; Zhang, Y.; Sheng, R.; Sun, R.; Chen, L.; Lv, R.; Qi, Y. In Vitro Antifungal Activity and Mechanism of Ag3PW12O40 Composites against Candida Species. Molecules 2020, 25, 6012. https://doi.org/10.3390/molecules25246012
Zhang X, Zhang T, Guo S, Zhang Y, Sheng R, Sun R, Chen L, Lv R, Qi Y. In Vitro Antifungal Activity and Mechanism of Ag3PW12O40 Composites against Candida Species. Molecules. 2020; 25(24):6012. https://doi.org/10.3390/molecules25246012
Chicago/Turabian StyleZhang, Xinming, Tianzhan Zhang, Shuanli Guo, Yang Zhang, Rongtian Sheng, Ruimeng Sun, Lixia Chen, Ruijuan Lv, and Yanfei Qi. 2020. "In Vitro Antifungal Activity and Mechanism of Ag3PW12O40 Composites against Candida Species" Molecules 25, no. 24: 6012. https://doi.org/10.3390/molecules25246012
APA StyleZhang, X., Zhang, T., Guo, S., Zhang, Y., Sheng, R., Sun, R., Chen, L., Lv, R., & Qi, Y. (2020). In Vitro Antifungal Activity and Mechanism of Ag3PW12O40 Composites against Candida Species. Molecules, 25(24), 6012. https://doi.org/10.3390/molecules25246012