Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Proximate Composition of the Main Raw Materials
2.2. Fatty Acids Methyl Esters Content of Spent Malt Rootlets Flour (MRF) and Whole Wheat Spelt Flour (SWF)
2.3. Volatile Compounds of Spent Malt Rootlets Flour (MRF) and Whole Wheat Spelt Flour (SWF)
2.4. Fatty Acids Methyl Esters Content of Final Enriched Biscuits
2.5. Volatile Compounds Content in Enriched Biscuits
2.6. Pearson Correlation
2.7. Sensory Analysis
3. Materials and Methods
3.1. Procurement of Raw Materials
3.2. Malt Rootlets Flour Preparation
3.3. Proximate Composition Analysis of the Flours and Biscuits
3.4. Preparation of Dough and Baking Biscuits
3.5. Determination of Fatty Acid Composition
3.5.1. Total Lipid Determination
3.5.2. Fatty Acids Profile by GC-MS Analysis
3.6. Extraction and Analysis of Volatile Compound
3.7. Sensory Evaluation
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, A.Y.; Zheng, S.; Cho, C.J.L.; Wei, H.; Kin, Y.L.; Mingji, L.; Carol, S.H.L. Valorisation of bakery waste for succinic acid production. Green Chem. 2013, 15, 690–695. [Google Scholar] [CrossRef]
- EU Actions against Food Waste. Available online: http://ec.europa.eu/food/safety/food_waste/eu_actions/index_en.htm (accessed on 11 November 2018).
- Radenkovs, V.; Juhnevica-Radenkova, K.; Górnaś, P.; Seglina, D. Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci. Technol. 2018, 77, 64–76. [Google Scholar] [CrossRef]
- Fărcaş, A.C.; Socaci, S.A.; Michiu, D.; Biriş, S.; Tofană, M. Tomato Waste as a Source of Biologically Active Compounds. Bull. UASVM Food Sci. Technol. 2019, 76, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Socaci, S.A.; Farcas, A.C.; Vodnar, D.C.; Tofana, M. Food Wastes as Valuable Sources of Bioactive Molecules. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; InTech: Rijeka, Croatia, 2017; Volume 1, pp. 75–93. [Google Scholar]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Waters, D.M.; Kingston, W.; Jacob, F.; Titze, J.; Arendt, E.K.; Zannini, E. Wheat bread biofortification with rootlets, a malting by-product. J. Sci. Food Agric. 2019, 93, 2372–2383. [Google Scholar] [CrossRef] [PubMed]
- Huth, M.; Dongowski, G.; Gebhardt, E.; Flamme, W. Functional properties of dietary fibre enriched extrudates from Barley. J. Cereal Sci. 2000, 32, 115–128. [Google Scholar] [CrossRef]
- Pins, J.J.; Kaur, H. A review of the effects of barley β-glucan on cardiovascular and diabetic risk. Cereal Foods World 2006, 51, 8–11. [Google Scholar] [CrossRef]
- El-samee, A.; Hashish, S.M. Olive Cake and Barley Malt Rootlets in Hen Diets to Improve Egg Lipids and Fatty Acids. IJAS 2012, 2, 383–389. [Google Scholar]
- Salama, A.A.; El-Sahn, M.A.; Mesallam, A.S.; Shehata, A.M.E. Evaluation of the quality of bread, biscuit and butcher’s sausage supplemented with rootlets of malt sprouts. Food Nahr. 1997, 41, 228–231. [Google Scholar] [CrossRef]
- Panesar, P.S.; Kaur, R.; Singla, G.; Sangwan, R.S. Bio-processing of agro-industrial wastes for production of food-grade enzymes: Progress and prospects. Appl. Food Biotechnol. 2016, 3, 208–227. [Google Scholar]
- Salama, A.R.A.; El-Sahn, M.A.; Mesallam, A.S.; El-Tabey Shehata, A.M. The chemical composition, the nutritive value and the functional properties of malt sprout and its components (acrespires, rootlets and husks). J. Sci. Food Agric. 1997, 75, 50–56. [Google Scholar] [CrossRef]
- Radosavljević, M.; Pejin, J.; Pribic, M.; Kocić-Tanackov, S.; Romanić, R.; Mladenović, D.; Djukić-Vuković, A.; Mojović, L. Utilization of brewing and malting by-products as carrier and raw materials in l-(+)-lactic acid production and feed application. Appl. Microbiol. Biotechnol. 2019, 103, 3001–3013. [Google Scholar] [CrossRef] [PubMed]
- Aggelopoulos, T.; Bekatorou, A.; Pandey, A.; Kanellaki, M.; Koutinas, A.A. Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl. Biochem. Biotechnol. 2014, 170, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Bonnely, S.; Peyrat-Maillard, M.N.; Rondini, L.; Masy, D.; Berset, C. Antioxidant activity of malt rootlet extracts. J. Agric. Food Chem. 2000, 48, 2785–2792. [Google Scholar] [CrossRef]
- Beluhan, S.; Karmelić, I.; Novak, S.; Marić, V. Partial purification and biochemical characterization of alkaline 5′-phosphodiesterase from barley malt sprouts. Biotechnol. Lett. 2003, 25, 1099–1103. [Google Scholar] [CrossRef]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef]
- Bonafaccia, G.; Galli, V.; Francisci, R.; Mair, V.; Skrabanja, V.; Kreft, I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000, 68, 437–441. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Topakas, E.; Tzia, C. Chemical characterization and breadmaking potential of spelt versus wheat flour. J. Cereal Sci. 2018, 79, 50–56. [Google Scholar] [CrossRef]
- Ruibal-mendieta, N.L.; Delacroix, D.L.; Meurens, M. A Comparative Analysis of Free, Bound and Total Lipid Content on Spelt and Winter Wheat Wholemeal. J. Cereal Sci. 2002, 35, 337–342. [Google Scholar] [CrossRef]
- Gordon, R.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. A Review on the Source of Lipids and Their Interactions during Beer Fermentation that Affect Beer Quality. Fermentation 2018, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Chis, M.S.; Paucean, A.; Stan, L.; Muste, S.; Suharoschi, R.; Man, S.M. Impact of protein metabolic conversion and volatile derivates on gluten-free muffins made with quinoa sourdough. CyTA J. Food 2019, 17, 744–753. [Google Scholar] [CrossRef]
- Cejas, L.; Romano, N.; Moretti, A.; Mobili, P.; Golowczyc, M.; Gómez-Zavaglia, A. Malt sprout, an underused beer by-product with promising potential for the growth and dehydration of lactobacilli strains. J. Food Sci. Technol. 2017, 54, 4464–4472. [Google Scholar] [CrossRef] [PubMed]
- Begea, M.; Sirbu, A.; Constantin, U.; Pitesti, B. Pilot technology to obtain a bio-based product from barley malt rootlets. Int. J. Food Biosyst. Eng. 2017, 3, 66–72. [Google Scholar]
- Sridevi Sivakami, P.L.; Sarojini, K.S. Formulation of value added biscuitsusing defatted coconut flour. Am. J. Food Technol. 2013, 8, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Rajiv, J.; Lobo, S.; Jyothi Lakshmi, A.; Venkateswara Rao, G. Influence of Green Gram Flour (Phaseolus Aureus) on the Rheology, Microstructure and Quality of Cookies. J. Texture Stud. 2012, 43, 350–360. [Google Scholar] [CrossRef]
- Bansal, S.; Sudha, M.L. Nutritional, microstructural, rheological and quality characteristics of biscuits using processed wheat germ. Int. J. Food Sci. Nutr. 2011, 62, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.A.; Sharma, G.K.; Khan, M.A.; Govindaraj, T.; Semwal, A.D. Development of multigrain premixes—Its effect on rheological, textural and micro-structural characteristics of dough and quality of biscuits. J. Food Sci. Technol. 2015, 52, 7759–7770. [Google Scholar] [CrossRef] [Green Version]
- Bodroža-Solarov, M.; Vujić, D.; Ačanski, M.; Pezo, L.; Filipčev, B.; Mladenov, N. Characterization of the liposoluble fraction of common wheat (Triticum aestivum) and spelt (T. aestivum ssp. spelta) flours using multivariate analysis. J. Sci. Food Agric. 2014, 94, 2613–2617. [Google Scholar]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Lee, H.; Kang, S.B.; Park, W.J. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Pico, J.; Bernal, J.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Li, L.; Liu, G.; Li, B.; Zhu, Y.; Liao, L. Structural Changes of Malt Proteins during Boiling. Molecules 2009, 14, 1081–1097. [Google Scholar] [CrossRef]
- Farzaneh, V.; Ghodsvali, A.; Bakhshabadi, H.; Zare, Z.; Carvalho, I.S. The impact of germination time on the some selected parameters through malting process. Int. J. Biol. Macromol. 2017, 94, 663–668. [Google Scholar] [CrossRef]
- Herrmann, M.; Gastl, M.; Thiele, F.; Back, W. Malt volatile compounds (Part I). Brew. Sci. 2007, 60, 110–117. [Google Scholar]
- Farcas, A.C.; Mudura, E.; Socaci, S.A.; Dulf, F.V.; Tofana, M. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Dong, L.; Piao, Y.; Zhang, X.; Zhao, C.; Hou, Y.; Shi, Z. Analysis of volatile compounds from a malting process using headspace solid-phase micro-extraction and GC–MS. Food Res. Int. 2013, 51, 783–789. [Google Scholar] [CrossRef]
- Burseg, K.; Linforth, R.S.T.; Hort, J.; Taylor, A.J. Flavor perception in biscuits; Correlating sensory properties with composition, aroma release, and texture. Chemosens. Percept. 2009, 2, 70–78. [Google Scholar] [CrossRef]
- Ordon, M.I.H.G.; Mes, J.E.M.A. Antioxidant Properties of Kilned and Roasted Malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar]
- Paucean, A.; Moldovan, O.P.; Mureșan, V.; Socaci, S.A.; Dulf, F.V.; Alexa, E.; Man, S.M.; Mureșan, A.E.; Muste, S. Folic acid, minerals, amino-acids, fatty acids and volatile compounds of green and red lentils. Folic acid content optimization in wheat-lentils composite flours. Chem. Cent. J. 2018, 12, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, N.W.; Huang, P.C. Effects of the Ratio of Polyunsaturated and Monounsaturated Fatty Acid to Saturated Fatty Acid on Rat Plasma and Liver Lipid Concentrations. Lipids 1998, 33, 480–487. [Google Scholar] [CrossRef]
- Socaci, S.A.; Socaciu, C.; Mureșan, C.; Farcas, A.; Tofană, M.; Vicaș, S.; Pintea, A. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochem. Anal. 2014, 25, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, M.; Liu, Y.L.; Zhang, L.; Zhang, Y.; Ren, J.N.; Pan, S.Y.; Fan, G. Effect of Food Emulsifiers on Aroma Release. Molecules 2016, 21, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J. D-Limonene: Safety and Clinical Applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar] [PubMed]
- Woffenden, H.M.; Ames, J.M.; Chandra, S. Relationships between Antioxidant Activity, Color, and Flavor Compounds of Crystal Malt Extracts. J. Agric. Food Chem. 2001, 49, 5524–5530. [Google Scholar] [CrossRef] [PubMed]
- Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of α- and β-pinene into flavor compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar]
- Pico, J.; Tapia, J.; Bernal, J.; Gómez, M. Comparison of different extraction methodologies for the analysis of volatile compounds in gluten-free flours and corn starch by GC/QTOF. Food Chem. 2018, 267, 303–312. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Res. Int. 2014, 65, 385–393. [Google Scholar] [CrossRef]
- Valili, S.; Siavalas, G.; Karapanagioti, H.K.; Manariotis, I.D.; Christanis, K. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. J. Environ. Manag. 2013, 128, 252–258. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 11th ed.; Method 38-12; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Man, S.M.; Paucean, A.; Calian, I.D.; Muresan, V.; Chiș, M.S.; Pop, A.; Muresan, A.E.; Bota, M.; Muste, S. Influence of Fenugreek Flour (Trigonella foenum-graecum L.) Addition on the Technofunctional Properties of Dark Wheat Flour. J. Food Qual. 2019, 2019, 8635806. [Google Scholar] [CrossRef] [Green Version]
- Krystyjan, M.; Gumul, D.; Ziobro, R.; Korus, A. The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT Food Sci. Technol. 2015, 63, 640–646. [Google Scholar] [CrossRef]
- Duca, A.; Alexa, E.; Dehelean, C.D.; Soica, C.; Danciu, C.; Popescu, I.; Cocan, I.; Lalescu, D.; Muntean, D.M. Assessment of lipid profile of eight propolis samples from western Romania. Farmacia 2019, 67, 126–132. [Google Scholar] [CrossRef]
- The Pherobase Database of Pheromones and Semiochemicals. Avalaible online: https://www.pherobase.com/ (accessed on 10 November 2019).
- Flavornet and human odor space. Available online: http://www.flavornet.org (accessed on 10 November 2019).
Sample Availability: Not available. |
Parameters | MRF | SWF | BF | WRF | OFF | CF |
---|---|---|---|---|---|---|
Moisture | 8.2 ± 0.6 b | 14.27 ± 0.3 e | 12.3 ± 0.2 d | 10.5 ± 0.4 c | 13.3 ± 0.3 de | 6.41 ± 0.1 a |
Proteins | 35.5 ± 0.3 d | 15 ± 0.3 bc | 13.7± 0.2 b | 8.5 ± 0.1 a | 13.8 ± 0.2 b | 15.9 ±0.2 c |
Lipids | 1.9 a ± 0.3 a | 2.9 ± 0.3 a | 2.8 ± 0.23 a | 2.5 ± 0.3 a | 6.1 ± 0.5 b | 29.3 ± 0.2 c |
Carbohydrates | 46.70 ± 1.4 a | 66.59 ± 1.0 bc | 69.10 ± 0.21 bc | 77.6 ± 0.6 c | 63.70 ± 1.4 b | 46.19 ± 0.1 a |
Ash | 7.7 ± 0.2 c | 1.24 ± 0.2 ab | 2.1 ± 0.3 ab | 0.9 ± 0.1 a | 3.1 ± 0.2 b | 2.2 ± 0.2 ab |
Shorthand Nomenclature | Fatty Acids Systematic Names | Fatty Acids Trivial Name | Type | FA (% From Total FA) Samples | |
---|---|---|---|---|---|
SWF | MRF | ||||
10:0 | Decanoic acid | Capric acid | SFA | 0.58 ± 0.21 | 0.31 ± 0.03 |
10:1(n-6) | cis-4-Decenoic acid | Obtusilic acid | MUFA, ω−6 | 0.05 ± 0.01 | 0.14 ± 0.04 |
12:0 | Dodecanoic acid | Lauric acid | SFA | 1.13 ± 0.21 | 0.69 ± 0.17 |
15:0 | Pentadecanoic acid | Pentadecylic acid | SFA | 0.19 ± 0.15 | 0.42 ± 0.16 |
a15:0 | Methyl-tetradecanoic acid | Sarcinic acid | SFA | 0.15 ± 0.03 | nd |
16:0 | Hexadecanoic acid | Palmitic acid | SFA | 23.23 ± 0.11 | 30.50 ± 0.36 |
16:1(n-7) | cis-9-Hexadecenoic acid | Palmitoleic acid | MUFA | 0.69 ± 0.09 | 0.26 ± 0.08 |
17:0 | Heptadecanoic acid | Margaric acid | SFA | 3.24 ± 0.05 | 0.03 ± 0.01 |
18:0 | Octadecanoic acid | Stearic acid | SFA | 4.11 ± 0.02 | 1.45 ± 0.17 |
tr 18:1(n-9) | trans-9-Octadecenoic acid | Elaidic acid | MUFA, ω-9 | nd | 0.09 ± 0.01 |
18:1(n-7) | cis-11-Octadecenoic acid | Vaccenic acid | MUFA | nd | 1.15 ± 0.29 |
18:1(n-9) | cis-9-Octadecenoic acid | Oleic acid | MUFA, ω-9 | 24.66 ± 0.04 | 12.13 ± 0.09 |
18:2(n-6) | 9,12-Octadecadienoic acid | Linoleic acid | PUFA, ω−6 | 26.69 ± 0.03 | 35.61 ± 0.26 |
18:3(n-3) | 9,12,15-Octadecatrienoic acid | Linolenic acid | PUFA, ω−3 | 4.42 ± 0.19 | 32.64 ± 0.38 |
20:0 | Eicosanoic acid | Arachidic acid | SFA | 0.11 ± 0.06 | nd |
20:4(n-6) | 5,8,11,14-Eicosatetraenoic acid | Arachidonic | PUFA, ω−6 | nd | 0.79 ± 0.19 |
22:1(n-9) | cis-13-Docosenoic acid | Erucic acid | MUFA, ω-9 | nd | 0.38 ± 0.15 |
22:6(n-3) | 4,7,10,13,16,19-Docosahexaenoic acid | Docosaheptaenoic acid | PUFA, ω−3 | nd | 1.16 ± 0.53 |
∑SFAs | - | - | - | 32.63 ± 0.78 | 33.40 ± 0.90 |
∑MUFAs | - | - | - | 25.40 ± 0.14 | 14.15 ± 0.66 |
∑PUFAs | - | - | - | 31.11 ± 0.22 | 70.20 ± 1.36 |
∑PUFAs/∑MUFAs | - | - | - | 1.22 ± 1.57 | 4.96 ± 2.06 |
∑PUFAs/∑SFAs | - | - | - | 0.95 ± 0.28 | 2.10 ± 1.51 |
Volatile Compounds | RI (Retention Indices) | Perceived Flavour | SWF (%) | MRF (%) |
---|---|---|---|---|
Alcohols | ||||
3-methylbutan-1-ol | 736 | Whiskey, malt, burnt | - | 40.21 ± 0.23 |
2-methylbutan-1-ol | 739 | Alcoholic, winey | - | 4.02 ± 0.49 |
pentan-1-ol | 759 | Fruity, sweet | - | 3.25 ± 0.16 |
hexan-1-ol | 851 | Ethereal, Oil, alcohol, green, Fruity, Sweet, Woody, Floral | - | 12.72 ± 0.38 |
oct-1-en-3-ol | 975 | Mushroom, herbal, earthy | - | 1.46 ± 0.23 |
Aldehydes | ||||
Hexanal | 801 | Fresh, Green, Fatty, Aldehydic, Grass, Leafy, Fruity, Sweaty | 35.96 ± 0.37 | 8.36 ± 0.51 |
Heptanal | 903 | Fresh, Aldehydic, Fatty, Green, Burgundy, Grass | - | 0.88 ± 0.49 |
Nonanal | 1106 | Aldehydic, rose, waxy, citrus, orange, floral | 6.80 ± 0.28 | - |
2-methylpropanal | - | Wine, malt | 49.20 ± 0.47 | - |
Ketone | ||||
heptan-2-one | 895 | Fruity spicy, sweet herbal, coconut woody | - | 2.09 ± 0.39 |
octan-3-one | 965 | Herbal | - | 2.94 ± 0.65 |
1-phenylethanone | 1041 | Almond, floral | 8.02 ± 0.32 | - |
Ethanone | - | Whiskey | - | 0.29 ± 0.21 |
2-methylpentan-3-one | - | Mint | - | 0.25 ± 0.33 |
Terpenes and terpenoids | ||||
p-Cymene | 1028 | Citrus, sweet, herbal, spicy | - | 0.58 ± 0.66 |
Limonene | 1031 | Citrus, mint | - | 6.08 ± 0.48 |
Others | ||||
3-methylbutyl acetate | 877 | Sweaty, fruity, solvent | - | 0.54 ± 0.27 |
Nonane | 900 | Solvent | - | 0.68 ± 0.48 |
(E)-3,5,5-trimethylhex-2-ene | 969 | Solvent | - | 2.47 ± 0.77 |
2-pentylfuran | 993 | Buttery, green beans | - | 10.25 ± 0.11 |
(methyldisulfanyl) methane | - | Sulfurous, onion, cabbage | - | 1.45 ± 0.24 |
Shorthand Nomenclature | Fatty Acid’s Name | Type | B0 | B5 | B10 | B15 | B20 | B25 |
---|---|---|---|---|---|---|---|---|
4:0 | Butyric | SFA | 1.75 ± 0.05 d | 1.11± 0.11 a | 1.19 ± 0.08 b | 1.51 ± 0.05 c | 1.77 ± 0.13 d | 1.81 ± 0.09 d |
6:0 | Caproic | SFA | 0.90 ± 0.09 a | 0.92 ± 0.17 a | 0.98 ± 0.33 a | 0.86 ± 0.06 a | 0.98 ± 0.01 a | 1.41 ± 0.09 b |
8:0 | Caprylic | SFA | 0.73 ± 0.23 b | 0.83 ± 0.04 b | 0.85 ± 0.23 b | 0.84 ± 0.02 b | 0.04 ± 0.18 a | 0.04 ± 0.08 a |
10:0 | Capric | SFA | 2.30 ± 0.17 a | 2.38 ± 0.02 a | 2.48± 0.09 a | 3.39 ± 0.24 b | 2.31 ± 0.09 a | 2.24 ± 0.05 a |
10:1 | Decenoic | MUFA | 0.24 ± 0.55 a | 0.22 ± 0.19 a | 0.22 ± 0.12 a | 0.38 ± 0.01 b | 0.25 ± 0.07 a | 0.24 ± 0.81 a |
12:0 | Lauric | SFA | 3.56 ± 0.22 a | 3.34 ± 0.27 a | 3.37± 0.04 a | 3.75 ± 0.06 a | 4.63 ± 0.04 b | 5.10 ± 0.04 c |
14:0 | Myristic | SFA | 11.06 ± 0.08 c | 11.05 ± 0.15 c | 11.04 ± 0.02 c | 11.04 ± 0.17 c | 11.02 ± 0.12 b | 10.95 ± 0.01 a |
14:1 | Myristoleic | MUFA | 1.19 ± 0.03 ab | 1.11 ± 0.11 a | 1.18 ± 0.23 ab | 1.24 ± 0.08 bc | 1.33 ± 0.22 c | 1.84 ± 0.21 d |
16:0 | Palmitic | SFA | 0.44 ± 0.02 c | 0.35 ± 0.05 a | 0.41 ± 0.11 b | 0.41 ± 0.23 b | 0.40 ± 0.03 b | 0.40 ± 0.25 b |
18:3(n-3) | Linolenic | PUFA ω-3 | 1.98 ± 0.20 a | 1.92 ± 0.05 a | 1.99 ± 0.08 a | 2.38 ± 0.06 a | 2.11 ± 0.07 a | 4.60 ± 0.04 b |
18:1(n-9) | Oleic | MUFA, ω-9 | 1.26 ± 0.22 c | 1.01 ± 0.14 a | 1.18 ± 0.02 b | 1.17 ± 0.39 b | 1.15 ± 0.03 b | 1.18 ± 0.44 b |
18:2(n-6) | Linoleic | PUFA, ω−6 | 29.13 ± 0.04 a | 32.36 ± 0.03 b | 32.62 ± 0.01 b | 38.78 ± 0.06 c | 47.13 ± 0.03 d | 51.67 ± 0.07 e |
∑SFAs | - | - | 20.74 ± 0.86 bc | 19.98 ± 0.81 a | 20.32 ± 0.90 ab | 21.80 ± 0.83 d | 21.15 ± 0.60c | 21.95 ± 0.61d |
∑MUFAs | - | - | 2.69 ± 0.80 bc | 2.34 ± 0.74 a | 2.58 ± 0.09 b | 2.79 ± 0.48 c | 2.73 ± 0.32 bc | 3.26 ± 1.46 d |
∑PUFAs | - | - | 31.11 ± 0,24 a | 34.28 ± 0.28 b | 34.61 ± 0.09 b | 41.16 ± 0.12 c | 49.24 ±0.10 d | 56.27 ± 0.11 e |
∑PUFAs/∑MUFAs | - | - | 11.57 ± 0.30 a | 14.65 ± 0.38 c | 13.41 ± 0.35 b | 14.75 ± 0.25 c | 18.04 ± 0.31 d | 17.26 ± 0.08 d |
∑PUFAs/∑SFAs | 1.5 ± 0.28 a | 1.72 ± 0.10 b | 1.70 ± 0.10 b | 1.89 ± 0.14 c | 2.33 ± 0.17 d | 2.56 ± 0.18 e | ||
∑MUFAs/∑SFAs | 0.13 ± 0.93 b | 0.12 ± 0.54 a | 0.13 ± 0.29 b | 0.13 ± 0.58 b | 0.13 ± 0.53 b | 0.15 ± 2.39 c | ||
∑PUFAs + ∑MUFAs/∑SFAs | 1.63 ± 1.21 a | 1.83 ± 0.64 b | 1.83 ± 0.39 b | 2.02 ± 0.72 c | 2.46 ± 0.70 d | 2.71 ± 2.57 e |
Volatile Compounds | RI (Retention Indices) | Perceived Flavour | B0 | B5 | B10 | B15 | B20 | B25 |
---|---|---|---|---|---|---|---|---|
Alcohols | ||||||||
3-methylbutan-1-ol | 736 | Malty, alcoholic whiskey | - | 1.34 ± 0.03 a | 4.12 ± 0.09 b | 7.45 ± 0.71c | 8.41± 0.02 d | 11.27 ± 0.01 e |
Aldehyde | ||||||||
Hexanal | 801 | Fresh, Green, Fatty, Aldehydic, Grass, Leafy, Fruity, Sweaty | 4.51 ± 0.06 a | 6.21 ± 0.25 b | 9.29 ± 0.28 c | 12.58 ± 0.29 d | 25.06 ± 0.11 e | 28.22 ± 0.26 f |
Benzaldehyde | 960 | Almond, String, Sharp, Sweet, Bitter, Cherry | 07.1 ± 0.02 abc | 0.39 ± 0.55 a | 1.37 ± 0.07 bc | 1.47 ± 0.01 c | 0.6 ± 0.03 ab | 3.9 ± 0.36 d |
Ketone | ||||||||
heptan-2-one | 895 | Fruity spicy, sweet herbal, coconut woody | 0.88 ± 0.02 b | - | - | - | 0.51± 0.33 a | - |
1-phenylethanone | 1042 | Almond, floral | 1.34 ± 0.07 b | 1.78 ± 0.02 bc | 2.49 ± 0.28 cd | 1.3 ± 0.56 b | 0.39 ± 0.44 a | 2.79 ± 0.08 d |
Terpenes and terpenoids | ||||||||
α-Thujene | 938 | Green, herbal, woody | - | - | - | - | 0.38 ± 0.55 | - |
α-Pinene | 939 | Fresh, Sweet, Green, Woody, Earthy | 1.53 ± 0.05 a | 2.77 ± 0.24 e | 2.38 ± 0.45 d | 2.27 ± 0.22 c | 1.75 ± 0.22 b | - |
β-Pinene | 982 | pine, resin, turpentine | 21.81 ± 0.66 a | 21.16 ± 0.21 a | 27.76 ± 0.77 b | 29.9 ± 0.12 c | 36.78 ± 0.09 d | 40.24 ± 0.03 e |
β-Myrcene | 992 | Tropical, fruity with mango shades, grassy | - | - | - | - | 1.84 ± 0.21 | - |
α-Phellandrene | 1006 | Citrus, woody, grassy, pepper | - | - | - | 1.19 ± 0.06 a | 2.15 ± 0.44 b | - |
p-Cymene | 1028 | Citrus, sweet, herbal, spicy | 2.98 ± 0.31 a | 3.01 ± 0.23 a | 4.17 ± 0.44 b | 4.53 ± 0.03 b | 4.68 ± 0.04 b | 2.54 ± 0.22 a |
Limonene | 1031 | Citrus, mint | 24.76 ± 0.38 a | 33.41 ± 0.56 b | 35.22 ± 0.09 b | 41.49 ± 0.37 c | 55.91 ± 0.03 d | 60.15 ± 0.45 e |
γ-Terpinene | 1074 | Citrus, tropical, fruity, oily, woody | - | - | - | - | 3.02 ±0.05 | - |
1,3,8-p-Menthatriene | 1110 | Woody, citrus, grassy | - | 4.39 ± 0.05 | - | - | - | - |
Acids | ||||||||
Benzoic acid | 1277 | balsamic | 1.14 | - | - | - | - | - |
Other compounds | ||||||||
2-pentylfuran | 993 | Butter, green beans | - | - | - | - | - | 3.32 ± 0.33 |
n.i. | - | 1.54 ± 0.22 a | 2.01 ± 0.11 b | 1.41± 0.46 a | 1.98 ± 0.55 b | - | 1.79 ± 0.41 b | |
n.i. | - | 2.09 ± 0.44 bc | 2.33 ± 0.51 c | 2.13 ± 0.33 c | 1.64 ± 0.38 b | 0.81 ± 0.88 a | 2.16 ± 0.22 c |
Components (g) | B0 (Control) | B5 | B10 | B15 | B20 | B25 |
---|---|---|---|---|---|---|
Spelt whole wheat flour (SWF) | 40 | 40 | 40 | 40 | 40 | 40 |
Multigrain mix (MG) | 60 | 55 | 50 | 45 | 40 | 35 |
Malt rootlets flour (MRF) | 0 | 5 | 10 | 15 | 20 | 25 |
Butter | 40 | 40 | 40 | 40 | 40 | 40 |
Malt extract | 27 | 27 | 27 | 27 | 27 | 27 |
Baking powder | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Lemon juice | 1 | 1 | 1 | 1 | 1 | 1 |
Natural lemon aroma | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Salt | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiş, M.S.; Pop, A.; Păucean, A.; Socaci, S.A.; Alexa, E.; Man, S.M.; Bota, M.; Muste, S. Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles. Molecules 2020, 25, 442. https://doi.org/10.3390/molecules25030442
Chiş MS, Pop A, Păucean A, Socaci SA, Alexa E, Man SM, Bota M, Muste S. Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles. Molecules. 2020; 25(3):442. https://doi.org/10.3390/molecules25030442
Chicago/Turabian StyleChiş, Maria Simona, Anamaria Pop, Adriana Păucean, Sonia Ancuța Socaci, Ersilia Alexa, Simona Maria Man, Monica Bota, and Sevastiţa Muste. 2020. "Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles" Molecules 25, no. 3: 442. https://doi.org/10.3390/molecules25030442
APA StyleChiş, M. S., Pop, A., Păucean, A., Socaci, S. A., Alexa, E., Man, S. M., Bota, M., & Muste, S. (2020). Fatty Acids, Volatile and Sensory Profile of Multigrain Biscuits Enriched with Spent Malt Rootles. Molecules, 25(3), 442. https://doi.org/10.3390/molecules25030442