Interaction and Kinetics Study of the Co-Gasification of High-solid Anaerobic Digestate and Lignite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Blending Methods on Co-pyrolysis and Co-gasification
2.2. TG Analysis of Digestate and Lignite
2.3. Analysis of Interaction between Digestate and Lignite
2.4. Co-Gasification of Digestate and Lignite in a Lab-Scale Downdraft Fixed Bed Gasifier
2.5. Kinetic Analysis
3. Materials and Methods
3.1. Feedstock Materials
3.2. Experimental Set-Up
3.3. Blending Methods
3.3.1. The Wet Process and Dry Process
3.3.2. Preparation and Pore Structure Analysis of Pyrolysis Biochar
3.4. TG Analysis of Digestate and Lignite
3.4.1. TG Experiments
3.4.2. Reactivity Measurements
3.5. Analysis of Interaction Between Digestate and Lignite
3.6. Co-gasification of Digestate and Lignite in a Lab-scale Gasifier
3.7. Kinetics Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, Z.Y.; Kravaris, C. Robust stabilization of a two-stage continuous anaerobic bioreactor system. AIChE J. 2018, 64, 1295–1304. [Google Scholar] [CrossRef]
- Muvhiiwa, R.F.; Hildebrandt, D.; Glasser, D.; Matambo, T.; Sheridan, C. A thermodynamic approach toward defining the limits of biogas production. AIChE J. 2015, 61, 4270–4276. [Google Scholar] [CrossRef]
- National development and Reform Commission. National 13th Five-Year Development Plan for Rural Biogas. Available online: http://www.ndrc.gov.cn/zcfb/zcfbghwb/201702/W020170210515499067992.pdf/. (accessed on 9 September 2018).
- Chen, G.; Guo, X.; Cheng, Z.; Yan, B.; Dan, Z.; Ma, W. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier. Waste Manag. 2017, 69, 162–169. [Google Scholar] [CrossRef]
- Hossain, A.K.; Serrano, C.; Brammer, J.B.; Omran, A.; Ahmed, F.; Smith, D.I.; Davies, P.A. Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 2016, 171, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Shengqiang, C.; Wangliang, L.; Xiaoyu, Z.; Liqiang, M.; Changbo, L.; Gaojun, A. Progress in biomass gasification power generation technology. J. Chem. Ind. Eng. (China) 2018, 69, 3318–3330. [Google Scholar]
- Hu, M.; Gao, L.; Chen, Z.; Ma, C.; Zhou, Y.; Chen, J.; Ma, S.; Laghari, M.; Xiao, B.; Zhang, B.; et al. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 2016, 111, 409–416. [Google Scholar] [CrossRef]
- Ong, Z.; Cheng, Y.; Maneerung, T.; Yao, Z.; Tong, Y.W.; Wang, C.H.; Dai, Y. Co-gasification of woody biomass and sewage sludge in a fixed-bed downdraft gasifier. AIChE J. 2015, 61, 2508–2521. [Google Scholar] [CrossRef]
- Rulkens, W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energ. Fuel. 2008, 22, 9–15. [Google Scholar] [CrossRef]
- Xu, Q.X.; Pang, S.S.; Levi, T. Co-gasification of blended coal-biomass in an air/steam BFB gasifier: Experimental investigation and model validation. AIChE J. 2015, 61, 1639–1647. [Google Scholar] [CrossRef]
- Li, W.; Lu, C.; An, G.; Zhang, Y.; Tong, Y.W. Integration of high-solid digestion and gasification to dispose horticultural waste and chicken manure. Chin. J. Chem. Eng. 2018, 26, 1145–1151. [Google Scholar] [CrossRef]
- Neumann, J.; Meyer, J.; Ouadi, M.; Apfelbacher, A.; Binder, S.; Hornung, A. The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag. 2016, 47, 141–148. [Google Scholar] [CrossRef]
- Wang, T.; Ye, X.; Yin, J.; Jin, Z.; Lu, Q.; Zheng, Z.; Dong, C. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen. Bioresour. Technol. 2014, 169, 812–815. [Google Scholar] [CrossRef]
- Wang, T.; Ye, X.; Yin, J.; Lu, Q.; Zheng, Z.; Dong, C. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen. Bioresour. Technol. 2014, 164, 416–419. [Google Scholar] [CrossRef]
- Nsaful, F.; Görgens, J.F.; Knoetze, J.H. Comparison of combustion and pyrolysis for energy generation in a sugarcane mill. Energy Convers. Manag. 2013, 74, 524–534. [Google Scholar] [CrossRef]
- Howaniec, N.; Smoliński, A.; Cempa-Balewicz, M. Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas. Energy 2015, 84, 455–461. [Google Scholar] [CrossRef]
- Jayaraman, K.; Gökalp, I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers. Manag. 2015, 89, 83–91. [Google Scholar] [CrossRef]
- Ephraim, A.; Pozzobon, V.; Louisnard, O.; Minh, D.P.; Nzihou, A.; Sharrock, P. Simulation of biomass char gasification in a downdraft reactor for syngas production. AIChE J. 2016, 62, 1079–1091. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Bi, J.; Qu, X.; Lu, Q.; Cao, Q.; Li, W.; Yao, G.; Wang, Q.; Wang, J. Coal hydrogasification: Entrained flow bed design-operation and experimental study of hydrogasification characteristics. Int. J. Hydrogen Energy 2018, 43, 3664–3675. [Google Scholar] [CrossRef]
- Yao, Z.; Li, W.; Kan, X.; Dai, Y.; Tong, Y.W.; Wang, C.H. Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass. Energy 2017, 124, 133–145. [Google Scholar] [CrossRef]
- Prakash, S.; Zhang, C.; Park, J.D.; Razmjooei, F.; Yu, J.S. Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode. J. Colloid Interface Sci. 2019, 534, 47–54. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Hu, J.; Zhang, H.; Xiao, R. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 2016, 95, 55–63. [Google Scholar] [CrossRef]
- Couhert, C.; Commandre, J.M.; Salvador, S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 2009, 88, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, S.; Luo, Z.; Chen, L.; Meng, H.; Zhao, J. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass: Effects of the cellulose. Bioresour. Technol. 2017, 235, 256–264. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183. [Google Scholar] [CrossRef]
- Ping, C.; Zhou, J.; Cheng, J.; Yang, W.; Cen, K. Surface structure of blended coals during pyrolysis (in Chinese). J. Chem. Ind. Eng. (China). 2007, 58, 1798. [Google Scholar]
- Chai, Z.H.; Yang, G.L.; Chen, M. Treating urban dredged silt with ethanol improves settling and solidification properties. Korean J. Chem. Eng. 2013, 30, 105–110. [Google Scholar] [CrossRef]
- Xu, C.; Hu, S.; Xiang, J.; Zhang, L.; Sun, L.; Shuai, C.; Chen, Q.; He, L.; Edreis, E.M.A. Interaction and kinetic analysis for coal and biomass co-gasification by TG–FTIR. Bioresour. Technol. 2014, 154, 313–321. [Google Scholar] [CrossRef]
- Song, F.Y.; Haozhi, D.; Liqiang, Z.; Xifeng, Z. Research on pyrolysis of mixture of biomass components (in Chinese). Acta Energiae Solaris Sinica 2019, 40, 149–156. [Google Scholar]
- Che, D.Y. Research on Co-gasification Mechanism of Biomass and Coal Based on Surface Physicochemical Structure Characteristics. Ph.D. Thesis, North China Electric Power University, Baoding, China, 2013. [Google Scholar]
- Edreis, E.M.A.; Li, X.; Luo, G.; Sharshir, S.W.; Yao, H. Kinetic analyses and synergistic effects of CO2 co-gasification of low sulphur petroleum coke and biomass wastes. Bioresour. Technol. 2018, 267, 54–62. [Google Scholar] [CrossRef]
- Ellis, N.; Masnadi, M.S.; Roberts, D.G.; Kochanek, M.A.; Ilyushechkin, A.Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity. Chem. Eng. J. 2015, 279, 402–408. [Google Scholar] [CrossRef]
- Huang, Z.H.; Qin, L.B.; Xu, Z.; Chen, W.S.; Xing, F.T.; Han, J. The effects of Fe2O3 catalyst on the conversion of organic matter and bio-fuel production during pyrolysis of sewage sludge. J. Energy Inst. 2019, 92, 835–842. [Google Scholar] [CrossRef]
- Hu, J.H.; Shao, J.A.; Yang, H.P.; Lin, G.Y.; Chen, Y.Q.; Wang, X.H.; Zhang, W.N.; Chen, H.P. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. Bioresour. Technol. 2017, 244, 1–7. [Google Scholar] [CrossRef]
- Edreis, E.M.A.; Luo, G.; Li, A.; Xu, C.; Yao, H. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification. Energy Convers. Manag. 2014, 79, 355–366. [Google Scholar] [CrossRef]
- Okoroigwe, E.C. Combustion analysis and devolatilazation kinetics of gmelina, mango, neem and tropical almond woods under oxidative condition. Int J. Energy Res. 2015, 5, 1024–1033. [Google Scholar]
- Jeguirim, M.; Dorge, S.; Trouvé, G.; Said, R. Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy 2012, 44, 702–709. [Google Scholar]
- Guan, Y.; Ma, Y.; Zhang, K.; Chen, H.; Xu, G.; Liu, W.; Yang, Y. Co-pyrolysis behaviors of energy grass and lignite. Energy Convers. Manage. 2015, 93, 132–140. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, W.; Liu, H.; Jia, C.; Li, S. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl. Energ. 2011, 88, 2080–2087. [Google Scholar] [CrossRef]
- Koga, N.; Tanaka, H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim. Acta 2002, 388, 41–61. [Google Scholar] [CrossRef]
- Benzennou, S.; Laviolette, J.P.; Chaouki, J. Kinetic study of microwave pyrolysis of paper cups and comparison with calcium oxide catalyzed reaction. AIChE J. 2019, 65, 684–690. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Lee, T.V.; Beck, S.R. A new integral approximation formula for kinetic-analysis of non-isothermal TGA data. AIChE J. 1984, 30, 517–519. [Google Scholar] [CrossRef]
- Yang, X.L.; Zhang, J.; Zhu, X.F. Thermal degradation kinetics of calcium-enriched bio-oil. AIChE J. 2008, 54, 1945–1953. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Dry Process | Wet Process | |
---|---|---|
Surface area (m2·g−1) | 249.90 | 286.60 |
Pore volume (cm3·g−1) | 0.0723 | 0.0862 |
Average pore diameter (nm) | 0.50 | 0.66 |
Ultimate Analysis (wt%, ad) | Proximate Analysis (wt%, d) | |||||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | Oa | Volatile matter | Ash | Fixed carbon | |
Lignite | 52.04 | 4.66 | 1.48 | 1.31 | 25.92 | 54.01 | 12.09 | 33.89 |
AD0 | 32.33 | 4.52 | 1.63 | 0.35 | 28.17 | 56.12 | 31.88 | 12.00 |
AD10 | 31.09 | 4.09 | 2.24 | 0.43 | 24.03 | 50.65 | 37.42 | 11.94 |
AD25 | 29.73 | 3.72 | 2.41 | 0.51 | 21.53 | 47.09 | 41.41 | 11.50 |
AD40 | 29.64 | 3.61 | 2.38 | 0.54 | 20.31 | 47.75 | 41.48 | 10.77 |
Characteristics | Ln | AD0 | AD10 | AD25 | AD40 | Ln-AD0 | Ln-AD10 | Ln-AD25 | Ln-AD40 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | Tmax, °C | 417 | 337 | 331 | 332 | 323 | 334 | 328 | 325 | 334 |
DTGmax, %·min−1 | 2.41 | 9.87 | 8.05 | 7.83 | 7.22 | 5.22 | 3.92 | 4.06 | 3.75 | |
S2 | Tmax, °C | 842 | 864 | 871 | 871 | 857 | 831 | 845 | 845 | 842 |
DTGmax, %·min−1 | 5.02 | 4.19 | 3.15 | 3.79 | 2.62 | 4.21 | 4.15 | 4.11 | 4.26 |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
E (kJ·mol−1) | A (min−1) | R2 | E (kJ·mol−1) | A (min−1) | R2 | ||
Ln | D3 | 40.29 | 1.62 × 100 | 0.9985 | 118.36 | 1.63 × 104 | 0.9821 |
D4 | 38.89 | 1.15 × 100 | 0.9980 | 86.16 | 1.35 × 102 | 0.9906 | |
A0.5 | 42.42 | 2.48 × 101 | 0.9990 | 177.68 | 1.15 × 109 | 0.9569 | |
AD0 | D3 | 96.95 | 2.71 × 106 | 0.9906 | 120.01 | 2.12 × 104 | 0.9614 |
D4 | 93.55 | 1.18 × 106 | 0.9888 | 74.82 | 6.34 × 101 | 0.9750 | |
A0.5 | 102.19 | 8.73 × 107 | 0.9926 | 208.65 | 1.02 × 1010 | 0.9385 | |
AD10 | D3 | 90.31 | 4.85 × 105 | 0.9861 | 102.91 | 7.27 × 102 | 0.9833 |
D4 | 87.17 | 2.27 × 105 | 0.9841 | 61.87 | 5.37 × 100 | 0.9883 | |
A0.5 | 95.12 | 1.40 × 107 | 0.9886 | 184.20 | 7.09 × 107 | 0.9671 | |
AD25 | D3 | 87.17 | 2.26 × 105 | 0.9911 | 83.95 | 4.01 × 103 | 0.9744 |
D4 | 84.29 | 1.12 × 105 | 0.9899 | 59.58 | 2.59 × 101 | 0.9842 | |
A0.5 | 91.58 | 5.92 × 106 | 0.9924 | 127.05 | 4.36 × 108 | 0.9531 | |
AD40 | D3 | 81.46 | 8.14 × 104 | 0.9939 | 81.14 | 2.28 × 102 | 0.9844 |
D4 | 78.70 | 4.11 × 104 | 0.9930 | 47.41 | 2.19 × 100 | 0.9870 | |
A0.5 | 85.69 | 2.07 × 106 | 0.9948 | 147.28 | 1.02 × 107 | 0.9736 |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
E (kJ·mol−1) | A (min−1) | R2 | E (kJ·mol−1) | A (min−1) | R2 | ||
Ln-AD0 | D3 | 65.93 | 1.32 × 103 | 0.9939 | 119.82 | 1.65 × 104 | 0.9739 |
D4 | 64.18 | 8.50 × 102 | 0.9935 | 82.33 | 1.29 × 102 | 0.9913 | |
A0.5 | 68.59 | 2.32 × 104 | 0.9942 | 192.37 | 1.24 × 109 | 0.9330 | |
Ln-AD10 | D3 | 56.78 | 1.43 × 102 | 0.9931 | 112.26 | 7.03 × 103 | 0.9799 |
D4 | 55.26 | 9.67 × 101 | 0.9926 | 76.76 | 6.77 × 101 | 0.9925 | |
A0.5 | 59.10 | 2.31 × 103 | 0.9938 | 180.13 | 3.18 × 108 | 0.9475 | |
Ln-AD25 | D3 | 55.55 | 5.11 × 102 | 0.9886 | 110.18 | 5.52 × 103 | 0.9751 |
D4 | 54.20 | 3.47 × 102 | 0.9883 | 75.30 | 5.68 × 101 | 0.9905 | |
A0.5 | 57.61 | 8.25 × 103 | 0.9890 | 176.82 | 2.18 × 108 | 0.9402 | |
Ln-AD40 | D3 | 55.07 | 9.34 × 101 | 0.9948 | 99.15 | 1.42 × 103 | 0.9586 |
D4 | 53.73 | 6.59 × 101 | 0.9947 | 73.18 | 4.22 × 101 | 0.9766 | |
A0.5 | 57.12 | 1.42 × 103 | 0.9950 | 145.73 | 5.65 × 106 | 0.9284 |
CaO | SiO2 | SO3 | Al2O3 | Fe2O3 | MgO | P2O5 | K2O | Total | |
---|---|---|---|---|---|---|---|---|---|
Lignite | 32.10 | 21.43 | 20.14 | 12.00 | 7.40 | 4.64 | — | 0.74 | 98.45 |
Digestate | 23.72 | 23.99 | 3.51 | 4.54 | 2.23 | 9.95 | 21.24 | 5.51 | 94.69 |
Model. | Symbol | ||
---|---|---|---|
Three-dimensional diffusion (Jander) | D3 | ||
Three-dimensional diffusion (Ginstling-Brounshtein) | D4 | ||
Nucleation and growth (Avrami-Erofeev) | A0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Zhang, Z.; Cao, L.; Ma, L.; Wang, F.; Li, J.; Li, W. Interaction and Kinetics Study of the Co-Gasification of High-solid Anaerobic Digestate and Lignite. Molecules 2020, 25, 459. https://doi.org/10.3390/molecules25030459
Chang S, Zhang Z, Cao L, Ma L, Wang F, Li J, Li W. Interaction and Kinetics Study of the Co-Gasification of High-solid Anaerobic Digestate and Lignite. Molecules. 2020; 25(3):459. https://doi.org/10.3390/molecules25030459
Chicago/Turabian StyleChang, Shengqiang, Zhikai Zhang, Lixia Cao, Liqiang Ma, Fang Wang, Jihui Li, and Wangliang Li. 2020. "Interaction and Kinetics Study of the Co-Gasification of High-solid Anaerobic Digestate and Lignite" Molecules 25, no. 3: 459. https://doi.org/10.3390/molecules25030459
APA StyleChang, S., Zhang, Z., Cao, L., Ma, L., Wang, F., Li, J., & Li, W. (2020). Interaction and Kinetics Study of the Co-Gasification of High-solid Anaerobic Digestate and Lignite. Molecules, 25(3), 459. https://doi.org/10.3390/molecules25030459