Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens
Abstract
:1. Introduction
2. Results
2.1. Covalent Immobilization of L-AK on Nanomaterials
2.2. Transesterification Reactions Mediated by Immobilized L-AK
2.2.1. The Effect of Organic Solvents upon Biodiesel Production
2.2.2. The Effect of Water Content on Biodiesel Production
2.2.3. The Influence of the Protein Content of the Biocatalysts upon the Specific Enzyme Activity for the Transesterification Reactions
2.2.4. The Effect of the Oil-Ethanol Molar Ratio
2.2.5. Reusability of the Immobilized Lipases
2.2.6. Other Linkers for Enzyme Immobilization on SwCNTNH2
3. Materials and Methods
3.1. Materials
3.2. Equipments
3.3. Methods
3.3.1. Determination of Conversion
3.3.2. Functionalization of SwCNT with Amino Groups
3.3.3. Fatty Acid Composition of Sunflower Oil
3.3.4. Covalent Binding of L-AK to SwCNTCOOH
3.3.5. Covalent Binding of L-AK to SwCNTNH2
3.3.6. Covalent Binding of L-AK to Reduced Graphene Oxide (rGO)
3.3.7. Biodiesel Production by Enzymatic Ethanolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hwang, H.T.; Qi, F.; Yuan, C.; Zhao, X.; Ramkrishna, D.; Liu, D.; Varma, A. Lipase-Catalyzed Process for Biodiesel Production: Protein Engineering and Lipase Production. Biotechnol. Bioeng. 2014, 111, 639–653. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S.A. Comprehensive Review on Biodiesel as an Alternative Energy Resource and its Characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel Production, Properties, and Feedstocks. In Vitro Cell. Dev. Biol.- Plant 2009, 45, 229–266. [Google Scholar] [CrossRef]
- Murugesan, A.; Umarani, C.; Chinnusamy, T.R.; Krishnan, M.; Subramanian, R.; Neduzchezhain, N. Production and Analysis of Bio-Diesel from Non-Edible Oils—A Review. Renew. Sustain. Energy Rev. 2009, 13, 825–834. [Google Scholar] [CrossRef]
- Enweremadu, C.C.; Rutto, H.L. Combustion, Emission and Engine Performance Characteristics of Used Cooking Oil Biodiesel—A Review. Renew. Sustain. Energy Rev. 2010, 14, 2863–2873. [Google Scholar] [CrossRef]
- Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from Algae: Challenges and Prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.M.; Hoeltz, M.; de Souza, D.; Benitez, L.B.; Schneider, R.C.S.; Muller, M.V.G. Current Approaches in Producing Oil and Biodiesel from Microalgal Biomass. In Waste Biomass Management – A Holistic Approach; Singh, L., Kalia, V.C., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 289–310. [Google Scholar]
- Akoh, C.C.; Chang, S.; Lee, G.; Shaw, J. Enzymatic Approach to Biodiesel Production. J. Agric. Food Chem. 2007, 55, 8995–9005. [Google Scholar] [CrossRef]
- Zhang, Y. Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresour. Technol. 2003, 89, 1–16. [Google Scholar] [CrossRef]
- Meher, L.; Vidyasagar, D.; Naik, S. Technical Aspects of Biodiesel Production by Transesterification—A Review. Renew. Sustain. Energy Rev. 2006, 10, 248–268. [Google Scholar] [CrossRef]
- Irimie, F.D.; Paizs, C.; Toşa, M.I.; Bencze, L.C. Biodiesel A Green Fuel Obtained through Enzymatic Catalysis. In Biomass Asrenewable Raw Material for Bioproducts; Popa, V., Volf, I., Eds.; Elsevier Press: Oxford, UK, 2018. [Google Scholar]
- Stamenković, O.S.; Veličković, A.V.; Veljković, V.B. The Production of Biodiesel from Vegetable Oils by Ethanolysis: Current State and Perspectives. Fuel 2011, 90, 3141–3155. [Google Scholar] [CrossRef]
- Reza, M.; Mohammadi, M.J.; Peyda, M.; Mohammadi, M. Covalent Immobilization of Candida Antarctica Lipase on Core-Shell Magnetic Nanoparticles for Production of Biodiesel from Waste Cooking Oil. Renew. Energy 2017, 101, 593–602. [Google Scholar]
- Encinar, J.M.; González, J.F.; Sánchez, N.; Nogales-Delgado, S. Sunflower Oil Transesterification with Methanol Using Immobilized Lipase Enzymes. Bioprocess Biosyst. Eng. 2019, 42, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Salis, A.; Bhattacharyya, M.S.; Monduzzi, M.; Solinas, V. Role of the Support Surface on the Loading and the Activity of Pseudomonas Fluorescens Lipase Used for Biodiesel Synthesis. J. Mol. Catal. B Enzym. 2009, 57, 262–269. [Google Scholar] [CrossRef]
- Kumari, V.; Shah, S.; Gupta, M.N. Preparation of Biodiesel by Lipase-Catalyzed Transesterification of High Free Fatty Acid Containing Oil from Madhuca Indica. Energy Fuels 2007, 2, 368–372. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of Enzymes on Porous Silicas--Benefits and Challenges. Chem. Soc. Rev. 2013, 42, 6277–6289. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Palomo, J.M.; Fuentes, M.; Betancor, L.; Grazu, V.; López-Gallego, F.; Pessela, B.C.C.; Hidalgo, A.; Fernández-Lorente, G.; Fernández-Lafuente, R.; et al. Glyoxyl Agarose: A Fully Inert and Hydrophilic Support for Immobilization and High Stabilization of Proteins. Enzym. Microb. Technol. 2006, 39, 274–280. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Li, D.; Yang, B.; Wang, Y. One-Step Synthesis of High-Yield Biodiesel from Waste Cooking Oils by A Novel and Highly Methanol-Tolerant Immobilized Lipase. Bioresour. Technol. 2017, 235, 18–24. [Google Scholar] [CrossRef]
- Amini, Z.; Ong, H.C.; Harrison, M.D.; Kusomo, F.; Mazaheri, H.; Ilham, Z. Biodiesel Production by Lipase-Catalyzed Transesterification of Ocimum basilicum L. (sweet basil) Seed Oil. Energy Convers. Manage. 2017, 132, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.; Mehrotra, S.; Vani, B.; Mehrotra, R. Lipase Immobilization Techniques for Biodiesel Roduction: An Overview. Int. J. Renew. Energy Biofuels 2014, 1–16. [Google Scholar]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Mohammadi, M. Process Optimization for Biodiesel Production from Waste Cooking Oil Using Multi-Enzyme Systems through Response Surface Methodology. Renew. Energy 2017, 105, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Gihaz, S.; Weiser, D.; Dror, A.; Satorhelyi, P.; Willemsen, M.J.; Poppe, L.; Fishman, A. Creating A Methanol -Stable Biocatalyst by Protein and Immobilization Engineering Steps Towards Efficient Biosynthesis of Biodiesel. ChemSusChem 2016, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaher, H.; Chen, W.-H. State of the Art and Prospective of Lipase-Catalyzed Transesterification. Energy Convers. Manage. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Li, K.; Fan, Y.; He, Y.; Zeng, L.; Han, X.; Yan, Y. Burkholderia cepacia Lipase Immobilized on Heterofunctional Magnetic Nanoparticles and its Application in Biodiesel Synthesis. Sci. Rep. 2017, 7, 1647. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Saxena, M.; O’Neill, C.A.; Ramos, H.A.R.; Greibenow, K. Synthesis of Rhizopus arrhizus Lipase Nanoparticles for Biodiesel Production. ACS Omega 2018, 3, 18203–18213. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, I.V.; Vorhaben, T.; Tsoufis, T.; Rudolf, P.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Development of Effective Nanobiocatalytic Systems through the Immobilization of Hydrolases on Functionalized Carbon-Based Nanomaterials. Bioresour. Technol. 2012, 115, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, X.; Jiang, Y.; Zhou, L.; Ma, L.; He, Y.; Gao, J. Biocatalytic Pickering Emulsions Stabilized by Lipase-Immobilized Carbon Nanotubes for Biodiesel Production. Catalyst 2018, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, U.R.; Ahmad, A.L.; Hamid, N.A. A Promising Membrane Material for Fuel Cells. Renew. Sust. Energ. Rev. 2018, 82, 714–733. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Zhang, J.; Shouwu, G. Graphene Oxide as A Atrix for Enzyme Immobilization. Langmuir 2010, 26, 6083–6085. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, L.; Weatherley, L. Process Intensification Technologies in Continuous Biodiesel Production. Chem. Eng. Process. 2010, 49, 323–330. [Google Scholar] [CrossRef]
- Poppe, J.K.; Fernandez-Lafuente, R.; Rodrigues, R.C.; Záchia Ayub, M.A. Enzymatic Reactors for Biodiesel Synthesis: Present Status and Future Prospects. Biotechnol. Adv. 2015, 33, 511–525. [Google Scholar] [CrossRef]
- Tran, D.T.; Chen, C.L.; Chang, J.S. Immobilization of Burkholderia sp. Lipase on a Ferric Silica Nanocomposite for Biodiesel Production. J. Biotechnol. 2012, 158, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Kuepethkaew, S.; Sangkharak, K.; Benjakul, S.; Klomklao, S. Optimized Synthesis of Biodiesel Using Lipase from Pacific White Shrimp (Litopenaeus Vannamei) Hepatopancreas. Renew. Energy 2017, 104, 139–147. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, G.; Su, F.; Li, K.; Xu, L.; Han, X.; Yan, Y. Lipase Oriented-Immobilized on Dendrimer-Coated Magnetic Multi-Walled Carbon Nanotubes toward Catalyzing Biodiesel Production from Waste Vegetable Oil. Fuel 2016, 178, 172–178. [Google Scholar] [CrossRef]
- Bencze, L.C.; Bartha-Vári, J.H.; Katona, G.; Toșa, M.I.; Paizs, C.; Irimie, F.D. Nanobioconjugates of Candida antarctica Lipase B and Single-Walled Carbon Nanotubes in Biodiesel Production. Bioresour. Technol. 2016, 200, 853–860. [Google Scholar] [CrossRef]
- Soumanou, M.M.; Bornscheuer, U.T. Improvement in Lipase-Catalyzed Synthesis of Fatty Acid Methyl Esters from Sunflower oil. Enzyme Microb. Technol. 2003, 33, 97–103. [Google Scholar] [CrossRef]
- Lima, L.N.; Oliveira, G.C.; Rojas, M.J.; Castro, H.F.; Da Ros, P.C.; Mendez, A.A.; Giordano, R.L.; Tardioli, P.W. Immobilization of Pseudomonas fluorescens Lipase on Hydrophobic Supports and Application in Biodiesel Synthesis by Transesterification of Vegetable Oils in Solvent-Free Systems. J. Ind. Microbiol. Biotechnol. 2015, 42, 523–535. [Google Scholar] [CrossRef]
- Zhang, W.W.; Yang, X.L.; Jia, J.Q.; Wang, N.; Hu, C.L.; Yu, X.Q. Surfactant-Activated Magnetic Cross-Linked Enzyme Aggregates (magnetic CLEAs) of Thermomyces Lanuginosus Lipase for Biodiesel Production. J. Mol. Catal. B Enzym. 2015, 115, 83–89. [Google Scholar] [CrossRef]
- Samukawa, T.; Kaieda, M.; Matsumoto, T.; Ban, K. Pretreatment of Immobilized Candida Antarctica Lipase for Biodiesel Fuel Production from Plant Oil. J. Biosci. Bioeng. 2000, 90, 180–183. [Google Scholar] [CrossRef]
- Kaieda, M.; Samukawa, T.; Kondo, A.; Fukuda, H. Effect of Methanol and Water Contents on Production of Biodiesel Fuel from Plant Oil Catalyzed by Various Lipases in A Solvent-Free System. J. Biosci. Bioeng. 2001, 91, 12–15. [Google Scholar] [CrossRef]
- Tan, T.; Nie, K.; Wang, F. Production of Biodiesel by Immobilized Candida sp. Lipase at High Water Content. Appl. Biochem. Biotechnol. 2006, 128, 109–116. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.A.; Foglia, T.A.; Marmer, W.N. Lipase-Catalyzed Production of Biodiesel. J. Am. Oil Chem. Soc. 1996, 73, 1191–1195. [Google Scholar] [CrossRef] [Green Version]
- Budžaki, S.; Miljić, G.; Sundaram, S.; Tišma, M.; Hessel, V. Cost Analysis of Enzymatic Biodiesel Production in Small-Scaled Packed-Bed Reactors. Appl. Energy 2018, 210, 268–278. [Google Scholar] [CrossRef]
- Bartha-Vári, J.H.; Bencze, L.C.; Bell, E.; Poppe, L.; Katona, G.; Irimie, F.D.; Paizs, C.; Toşa, M.I. Aminated Single-Walled Carbon Nanotubes as Carrier for Covalent Immobilization of Phenylalanine Ammonia-Lyase. Period. Polytech. Chem. Eng. 2017, 61, 59–66. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Oil:Ethanol Molar Ratio | Conversion (%) | |
---|---|---|---|
SwCNTCOOH-GDE-L-AK | SwCNTNH2-GDE-L-AK | ||
1 | 1:1 | 67.1 | 68.8 |
2 | 1:3 | 93.1 | 94.2 |
3 | 1:5 | 96.1 | 96.8 |
4 | 1:6 | 96.8 | 97.4 |
5 | 1:7 | 97.1 | 98.0 |
6 | 1:8 | 94.1 | 95.2 |
7 | 1:10 | 93.7 | 94.5 |
8 | 1:20 | 94.9 | 95.2 |
9 | 1:50 | 67.1 | 68.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartha-Vári, J.-H.; Moisă, M.E.; Bencze, L.C.; Irimie, F.-D.; Paizs, C.; Toșa, M.I. Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens. Molecules 2020, 25, 651. https://doi.org/10.3390/molecules25030651
Bartha-Vári J-H, Moisă ME, Bencze LC, Irimie F-D, Paizs C, Toșa MI. Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens. Molecules. 2020; 25(3):651. https://doi.org/10.3390/molecules25030651
Chicago/Turabian StyleBartha-Vári, Judith-Hajnal, Mădălina Elena Moisă, László Csaba Bencze, Florin-Dan Irimie, Csaba Paizs, and Monica Ioana Toșa. 2020. "Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens" Molecules 25, no. 3: 651. https://doi.org/10.3390/molecules25030651
APA StyleBartha-Vári, J. -H., Moisă, M. E., Bencze, L. C., Irimie, F. -D., Paizs, C., & Toșa, M. I. (2020). Efficient Biodiesel Production Catalyzed by Nanobioconjugate of Lipase from Pseudomonas fluorescens. Molecules, 25(3), 651. https://doi.org/10.3390/molecules25030651