Biological Activity of Essential Oils
Acknowledgments
Conflicts of Interest
References
- Patsilinakos, A.; Artini, M.; Papa, R.; Sabatino, M.; Bozovic, M.; Garzoli, S.; Vrenna, G.; Buzzi, R.; Manfredini, S.; Selan, L.; et al. Machine learning analyses on data including essential oil chemical composition and in vitro experimental antibiofilm activities against Staphylococcus species. Molecules 2019, 24, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; Beuran, M.; Predoi, D. Peppermint essential oil-doped hydroxyapatite nanoparticles with antimicrobial properties. Molecules 2019, 24, 2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Huang, M.; Pang, Y.X.; Yu, F.L.; Chen, C.; Liu, L.W.; Chen, Z.X.; Zhang, Y.B.; Chen, X.L.; Hu, X. Variations in essential oil yield, composition, and antioxidant activity of different plant organs from Blumea balsamifera (L.) DC. at different growth times. Molecules 2016, 21, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medbouhi, A.; Benbelaid, F.; Djabou, N.; Beaufay, C.; Bendahou, M.; Quetin-Leclercq, J.; Tintaru, A.; Costa, J.; Muselli, A. Essential oil of algerian Eryngium campestre: Chemical variability and evaluation of biological activities. Molecules 2019, 24, 2575. [Google Scholar] [CrossRef] [Green Version]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Winska, K.; Maczka, W.; Lyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Lantong, Z.; Chen, J.; Sui, J.; Yi, G.; Wu, J.; Ma, Y. Correlation between chemical composition and antifungal activity of Clausena lansium essential oil against Candida spp. Molecules 2019, 24, 1394. [Google Scholar] [CrossRef] [Green Version]
- Nardoni, S.; Najar, B.; Fronte, B.; Pistelli, L. In vitro activity of essential oils against Saprolegnia parasitica. Molecules 2019, 24, 1270. [Google Scholar] [CrossRef] [Green Version]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Leite de Souza, E. The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food related bacteria: A review. Trends Food Sci. Technol. 2016, 2016 56, 1–12. [Google Scholar] [CrossRef]
- Berdejo, D.; Checa, B.; Pagan, E.; Renzoni, A.; Kelley, W.L.; Pagan, R.; Garcia-Gonzalo, D. Sub inhibitory doses of individual constituents of essential oils can select for Staphylococcus aureus resistant mutants. Molecules 2019, 24, 170. [Google Scholar] [CrossRef] [Green Version]
- Margatto Rottini, M.; Fernandes Amaral, A.; Pinto Ferreira, J.L.; Souza Coelho Oliveira, E.; Rocha de Andrade Silva, J.; Nosomi Taniwaki, N.; dos Santos, A.R.; Almeida Souza, F.; da Silva Freitas de Souza, C.; da Silva Calabrese, K. Endlicheria bracteolata (Meisn.) essential oil as a weapon against Leishmania amazonensis: In vitro assay. Molecules 2019, 24, 2525. [Google Scholar] [CrossRef] [Green Version]
- Binh Le, T.; Beaufay, C.; Nghiem, D.T.; Pham, T.A.; Mingeot-Leclercq, M.P.; Quetin Leclercq, J. Evaluation of anti trypanosomal activity of vietnamese essential oils, with emphasis on Curcuma longa L. and its components. Molecules 2019, 24, 1158. [Google Scholar]
- Perez-Recalde, M.; Ruiz Arias, I.E.; Hermida, E.B. Could essential oils enhance biopolymers performance for wound healing? A systematic review. Phytomedicine 2018, 38, 57–65. [Google Scholar] [CrossRef]
- Mazutti da Silva, S.M.; Rezende Costa, C.R.; Martins Gelfuso, G.; Silva Guerra, E.N.; De Medeiros Nóbrega, Y.K.; Gomes, S.M.; Pic-Taylor, A.; Fonseca-Bazzo, Y.M.; Silveira, D.; Magalhães, P.O. Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules 2019, 24, 2. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, P. Essential Oils for the Treatment of Herpes Simplex Virus Infections. Chemotherapy 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Vuko, E.; Rusak, G.; Dunkic, V.; Kremer, D.; Kosalec, I.; Rada, B.; Bezic, N. Inhibitionof satellite RNA associated cucumber mosaic virus infection by essential oil of Micromeria croatica (Pers.) Schott. Molecules 2019, 24, 1342. [Google Scholar] [CrossRef] [Green Version]
- Sumalan, R.M.; Alexa, E.; Popescu, I.; Negrea, M.; Radulov, I.; Obistiolu, D.; Cocan, I. Exploring ecological alternatives for crop protection using Coriandrum sativum essential oil. Molecules 2019, 24, 2040. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Grul’ova, D.; Baranova, B.; Caputo, L.; De Martino, L.; Sedlak, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential extracted from Solidago canadensis L. Molecules 2019, 24, 1206. [Google Scholar] [CrossRef] [Green Version]
- Krzysko-Lupicka, T.; Walkowlak, W.; Bialon, M. Comparison of the fungistatic activity of selected essential oils relative to Fusarium graminearum isolates. Molecules 2019, 24, 311. [Google Scholar] [CrossRef] [Green Version]
- El Gawad, A.A.; Elshamy, A.; Elo Gendy, A.E.N.; Gaara, A.; Assaeed, A. Volatiles profiling, allelopathic activity, and antioxidant potentiality of Xanthium strumarium leaves essential oil from Egypt: Evidence from chemometrics analysis. Molecules 2019, 24, 584. [Google Scholar] [CrossRef] [Green Version]
- Matouskova, M.; Jurova, J.; Grul’ova, D.; Wajs-Bonikowska, A.; Renco, M.; Sedlak, V.; Poracova, J.; Gogal’ova, Z.; Kalemba, D. Phytotoxic effect of invasive Heracleum mantegazzianum essential oil on dicot and monocot species. Molecules 2019, 24, 425. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Deng, W.; Hu, W.; Cao, S.; Zhong, B.; Chun, J. Extraction of ‘Gannanzao’ orange peel essential oil by response surface methodology and its effect on cancer cell proliferation and migration. Molecules 2019, 24, 499. [Google Scholar] [CrossRef] [Green Version]
- Spyridopoulou, K.; Fitsiou, E.; Bouloukosta, E.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Oreopoulou, A.; Papavassilopoulou, E.; Pappa, A.; Chilchia, K. Extraction, chemical composition, and anticancer potential of Origanum onites L. essential oil. Molecules 2019, 24, 2612. [Google Scholar] [CrossRef] [Green Version]
- De Lima, E.J.S.P.; Alves, R.G.; D’Elia, G.M.A.; da Annunciacao, T.A.; Silva, V.R.; de Santos, L.S.; Soares, M.B.P.; Cardozo, N.M.D.; Costa, E.V.; da Silva, F.M.A.; et al. Antitumour effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2019, 24, 2974. [Google Scholar]
- Tung, Y.T.; Hsu, Y.J.; Chien, Y.W.; Huang, C.C.; Huang, W.C.; Chiu, W.C. Tea seed oil prevents obesity, reduces physical fatigue, and improves exercise performance in high fat diet induced obese ovariectomized mice. Molecules 2019, 24, 980. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Balasubramanian, N.; Quinn, M.T. Neutrophil immunomodulatory activity of natural organosulfur compounds. Molecules 2019, 24, 1809. [Google Scholar] [CrossRef] [Green Version]
- Codruta Heghes, S.; Vostinaru, O.; Rus, L.M.; Mogosan, C.; Iuga, C.A.; Filip, L. Antispasmodic effect of essential oils and their constituents: A review. Molecules 2019, 24, 1675. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancianti, F.; Ebani, V.V. Biological Activity of Essential Oils. Molecules 2020, 25, 678. https://doi.org/10.3390/molecules25030678
Mancianti F, Ebani VV. Biological Activity of Essential Oils. Molecules. 2020; 25(3):678. https://doi.org/10.3390/molecules25030678
Chicago/Turabian StyleMancianti, Francesca, and Valentina Virginia Ebani. 2020. "Biological Activity of Essential Oils" Molecules 25, no. 3: 678. https://doi.org/10.3390/molecules25030678
APA StyleMancianti, F., & Ebani, V. V. (2020). Biological Activity of Essential Oils. Molecules, 25(3), 678. https://doi.org/10.3390/molecules25030678