Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula-judae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single Factor Tests of UAE
2.2. Optimization of the Yield of AAP by RSM
2.3. Purification and Monosaccharide Composition of aAAP-1
2.4. UV and FT-IR Spectrum of aAAP-1
2.5. Anticoagulant Activity of aAAP-1 In Vitro
3. Materials and Methods
3.1. Material and Chemicals
3.2. Extraction and Purification of Acidic Polysaccharides from A. auricula-judae
3.2.1. Ultrasound-Assisted Extraction (UAE) of AAP
3.2.2. Isolation and Purification of aAAP
3.3. Determination of the Molecular Weight and Monosaccharide Composition Analysis
3.4. UV and FT-IR Analysis
3.5. Blood Coagulation Assays
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Murray, C.C. The global burden of disease, 1990–2020. Nat. Med. 1998, 4, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Sayari, N.; Balti, R.; Mansour, M.B.; Amor, I.B.; Graiet, I.; Gargouri, J.; Bougatef, A. Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster (Nephrops norvegicus) shell. Biomed. Pharmacother. 2016, 80, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Ghlissi, Z.; Krichen, F.; Kallel, R.; Amor, I.B.; Boudawara, T.; Gargouri, J.; Sahnoun, Z. Sulfated polysaccharide isolated from Globularia alypum L.: Structural characterization, in vivo and in vitro anticoagulant activity, and toxicological profile. Int. J. Biol. Macromol. 2019, 123, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Suflita, M.; Linhardt, R.J. Bioengineered heparins and heparan sulfates. Adv. Drug. Deliv Rev. 2016, 97, 237–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, I.R.L.; Queiroz, K.C.S.; Alves, L.G.; Santos, E.A.D.; Leite, E.L.; Rocha, H.A.O. Heterofucans from Dictyota menstrualis have anticoagulant activity. Braz. J. Med. Biol. Res. 2004, 37, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Wang, L.; Wang, L.; Yu, Q.; Ai, C.; Fu, Y.; Zhu, Z. Structural characterization and anticoagulant activity of two polysaccharides from Patinopecten yessoensis viscera. Int. J. Biol. Macromol. 2019, 136, 579–585. [Google Scholar] [CrossRef]
- Sun, F.; Liu, Y.; Wang, D.; Wang, Z.; Mu, H.; Wang, F.; Duan, J. A novel photocleavable heparin derivative with light controllable anticoagulant activity. Carbohydr. Polym. 2018, 184, 191–198. [Google Scholar] [CrossRef]
- Guan, R.; Peng, Y.; Zhou, L.; Zheng, W.; Liu, X.; Wang, P.; Zhao, J. Precise structure and anticoagulant activity of fucosylated glycosaminoglycan from Apostichopus japonicus: Analysis of its depolymerized fragments. Mar. Drugs 2019, 17, 195. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, X.; Niu, Y.; Ahmed, A.F.; Wang, J.; Kang, W. Anticoagulant activity of two novel polysaccharides from flowers of Apocynum venetum L. Int. J. Biol. Macromol. 2019, 124, 1230–1237. [Google Scholar] [CrossRef]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, extraction and biomedical properties of polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Xie, L.; Chen, Y.; Zhang, H. Purification, characterization and anticoagulant activity of the polysaccharides from green tea. Carbohydr. Polym. 2013, 92, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, X.; Chen, W.; Zhang, L.; Zhu, H. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Food Chem. 2016, 196, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; Guo, M. Effects of ultrasound treatment on extraction and rheological properties of polysaccharides from Auricularia Cornea var. Li. Molecules 2019, 24, 939. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shen, M.; Chen, Y.; Lou, Y.; Luo, R.; Chen, J.; Zhang, Y.; Li, J.; Wang, W. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. Int. J. Biol. Macromol. 2018, 113, 543–549. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Basso, A.M.M.; De Castro, R.J.A.; de Castro, T.B.; Guimarães, H.I.; Polez, V.L.P.; Carbonero, E.R.; Bocca, A.L. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Medical. Mycol. 2019, 58, 227–239. [Google Scholar] [CrossRef]
- Lu, A.; Shen, M.; Fang, Z.; Xu, Y.; Yu, M.; Wang, S.; Wang, W. Antidiabetic Effects of the Auricularia auricular polysaccharides simulated hydrolysates in experimental type-2 diabetic rats. Nat. Prod. Commun. 2018, 13, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, J.; Fan, Z.; Qiu, J.; Rumbani, M.; Yang, X.; Wang, Z. Effects of polysaccharide from the fruiting bodies of Auricularia auricular on glucose metabolism in 60Co-γ-radiated mice. Int. J. Biol. Macromol. 2019, 135, 887–897. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Zhang, L.; Zhang, Y.; Ding, K. Evaluation of water soluble β-D-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydr. Polym. 2010, 80, 977–983. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, C.; Zhang, Q.; Peng, X.; Feng, Y.; Meng, X. The effects of polysaccharides from Auricularia auricula (Huaier) in adjuvant anti-gastrointestinal cancer therapy: A systematic review and network meta-analysis. Pharmacol. Res. 2018, 132, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.K.T.; Frias, R.R., Jr.; Alvarez, L.V.; Bigol, U.G.; Guzman, J.P.M.D. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 2019, 17, 189–195. [Google Scholar] [CrossRef]
- Linnakoski, R.; Reshamwala, D.; Veteli, P.; Cortina-Escribano, M.; Vanhanen, H.; Marjomäki, V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front. Microbiol. 2018, 9, 2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, P.C. The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats1. Nutr. Res. 1996, 16, 1721–1725. [Google Scholar] [CrossRef]
- Ma, F.; Wu, J.; Li, P.; Tao, D.; Zhao, H.; Zhang, B.; Li, B. Effect of solution plasma process with hydrogen peroxide on the degradation of water-soluble polysaccharide from Auricularia auricula. II: Solution conformation and antioxidant activities in vitro. Carbohydr. Polym. 2018, 198, 575–580. [Google Scholar] [CrossRef]
- Yoon, S.J.; Yu, M.A.; Pyun, Y.R.; Hwang, J.K.; Chu, D.C.; Juneja, L.R.; Mourao, P.A. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thromb. Res. 2003, 112, 151–158. [Google Scholar] [CrossRef]
- Cifonelli, J.A. The relationship of molecular weight, and sulfate content and distribution to anticoagulant activity of heparin preparations. Carbohydr. Res. 1974, 37, 145–154. [Google Scholar] [CrossRef]
- Cikoš, A.M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Mar. Drugs. 2018, 16, 348. [Google Scholar] [CrossRef] [Green Version]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for extraction of bioactives from marine algae. J. Agric. Food. Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Fang, Z. Recent development in efficient processing technology for edible algae: A review. Trends. Food. Sci. Technol. 2019, 88, 251–259. [Google Scholar] [CrossRef]
- Kia, A.G.; Ganjloo, A.; Bimakr, M. A short extraction time of polysaccharides from fenugreek (Trigonella foencem graecum) seed using continuous ultrasound acoustic cavitation: Process optimization, characterization and biological activities. Food. Bioprocess. Technol. 2018, 11, 2204–2216. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food. Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Mena-García, A.; Ruiz-Matute, A.I.; Soria, A.C.; Sanz, M.L. Green techniques for extraction of bioactive carbohydrates. TrAC Trend. Anal. Chem. 2019, 119, 115612–115621. [Google Scholar] [CrossRef]
- Pawlaczyk-Graja, I.; Balicki, S.; Wilk, K.A. Effect of various extraction methods on the structure of polyphenolic-polysaccharide conjugates from Fragaria vesca L. leaf. Int. J. Biol. Macromol. 2019, 130, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Liu, Y.; Lai, C.; Yang, T.; Xie, J.; Zhang, Y. The effect of ultrasound assisted extraction on structural composition, antioxidant activity and immunoregulation of polysaccharides from Ziziphus jujuba Mill var. spinosa seeds. Ind. Crop. Prod. 2018, 125, 150–159. [Google Scholar] [CrossRef]
- Yip, K.M.; Xu, J.; Tong, W.S.; Zhou, S.S.; Yi, T.; Zhao, Z.Z.; Chen, H.B. Ultrasound-assisted extraction may not be a better alternative approach than conventional boiling for extracting polysaccharides from herbal medicines. Molecules 2016, 21, 1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babamoradi, N.; Yousefi, S.; Ziarati, P. Optimization of ultrasound-assisted extraction of functional polysaccharides from common mullein (Verbascum thapsus L.) flowers. J. Food Process. Eng. 2018, 41, e12851. [Google Scholar] [CrossRef]
- Bradley, T.D.; Mitchell, J.R. The determination of the kinetics of polysaccharide thermal degradation using high temperature viscosity measurements. Carbohydr. Polym. 1988, 9, 257–267. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, L.; Liu, F.; Li, T.; Yu, Z.; Xu, Y.; Yang, Y. Optimization of ultrasound-assisted extraction and structural characterization of the polysaccharide from pumpkin (Cucurbita moschata) seeds. Molecules 2018, 23, 1207. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, H.D.; Muḥammad, U.; Han, J.Z.; Wei, Z.H.; Lu, Z.X.; Lu, F.X. Ultrasound-assisted extraction of polysaccharides from Artemisia selengensis Turcz and its antioxidant and anticancer activities. J. Food. Sci. Technol. 2016, 53, 1025–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Yuan, Q.; Fu, Y.; Liu, W.; Su, Y.H.; Liu, H.; Wu, C.Y.; Zhao, L.; Zhang, Q.; Lin, D.R.; et al. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from Snow Chrysanthemum (Coreopsis Tinctoria). Polymers 2019, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jooyandeh, H.; Noshad, M.; Khamirian, R.A. Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. Int. J. Biol. Macromol. 2018, 107, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Liu, W.; Han, Q.H.; Wang, P.; Xiang, X.R.; Ding, Y.; Qin, W. Extraction optimization, structural characterization, and antioxidant activities of polysaccharides from Cassia Seed (Cassia obtusifolia). Molecules 2019, 24, 2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Luo, Y.C.; Ji, B.P.; Li, B.; Guo, Y.; Li, Y.; Xiao, Z.L. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet. J. Food Sci. 2008, 73, H103–H108. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Ding, Q.; Chen, X. Studies on molecular weights of polysaccharides of Auricularia auricula-judae. Carbohydr. Res. 1995, 270, 1–10. [Google Scholar] [CrossRef]
- Wu, Q.; Tan, Z.; Liu, H.; Gao, L.; Wu, S.; Luo, J.; Zhang, W.; Zhao, T.; Yu, J.; Xu, X. Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. Int. J. Biol. Macromol. 2010, 46, 284–288. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, Q.; Wu, J.; Sun, F.; Liu, Z.; Liang, S. Response surface methodology for optimizing the ultrasound-assisted extraction of polysaccharides from Acanthopanax giraldii. Chem. Pharm. Bull. 2018, 66, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Yang, S.; Zou, Y.; Cheng, W.; Li, B.; Hu, T.; Pang, D. Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries. Molecules 2019, 24, 2329. [Google Scholar] [CrossRef] [Green Version]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food. Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Chen, X.; Song, L.; Wang, H.; Liu, S.; Yu, H.; Wang, X.; Li, P. Partial characterization, the immune modulation and anticancer activities of sulfated polysaccharides from filamentous microalgae Tribonema sp. Molecules 2019, 24, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, S.; Ji, J.; Li, J.; Yang, Q.H.; Ye, M. Physicochemical properties and anticoagulant activity of polyphenols derived from Lachnum singerianum. J.Food Drug Anal. 2017, 25, 837–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrigan, J.J., Jr.; Ray, W.L.; May, N. Changes in the blood coagulation system associated with septicemia. New Engl. J. Med. 1968, 279, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Mao, X.; Xu, B. Pulsed Electric Field Extraction Enhanced Anti-coagulant effect of fungal polysaccharide from Jew’s Ear (Auricularia auricula). Phytochem. Analysis 2012, 24, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Majida, A.W.; Niu, L.; Zhou, F.; Zhang, Y.; Wang, M.; Wang, L. Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L. leaves. Int. J. Biol. Macromol. 2019, 133, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Zhang, Y.; Wang, X.; Wei, J.; Kang, W. Antithrombotic effect and mechanism of Rubus spp. Blackberry. Food. Funct. 2017, 8, 2000–2012. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.Y.; Zhang, Z.; Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP Ia) prevents oxidative stress in an ageing mouse model. Carbohydr. Polym. 2011, 84, 638–648. [Google Scholar] [CrossRef]
- Phélippé, M.; Gonçalves, O.; Thouand, G.; Cogne, G.; Laroche, C. Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal. Res. 2019, 38, 101426. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds cAAP are available from the authors. |
No. | Codded Variables | Extraction Yield of AAP (mg/g) | |||
---|---|---|---|---|---|
X1 (Extraction Temperature, °C) | X2 (Extraction Time, min) | X3 (Liquid-solid Ratio, ml/g) | X4 (Ultrasonic Power, W) | ||
1 | 0 | 0 | −1 | −1 | 9.23 |
2 | 0 | 0 | 1 | −1 | 13.02 |
3 | 1 | 0 | −1 | 0 | 11.79 |
4 | 0 | 0 | 0 | 0 | 15.39 |
5 | −1 | −1 | 0 | 0 | 9.59 |
6 | 0 | −1 | 0 | 1 | 12.67 |
7 | 0 | 1 | 0 | −1 | 12.34 |
8 | −1 | 0 | −1 | 0 | 9.32 |
9 | 0 | 0 | 0 | 0 | 15.02 |
10 | 0 | 0 | 0 | 0 | 16.17 |
11 | 0 | 1 | 0 | 1 | 10.69 |
12 | 1 | 0 | 1 | 0 | 11.09 |
13 | −1 | 0 | 1 | 0 | 11.19 |
14 | 1 | 1 | 0 | 0 | 11.32 |
15 | 0 | −1 | 0 | −1 | 9.57 |
16 | −1 | 1 | 0 | 0 | 11.97 |
17 | 0 | −1 | 1 | 0 | 11.76 |
18 | −1 | 0 | 0 | −1 | 9.95 |
19 | 0 | 0 | 1 | 1 | 10.34 |
20 | 0 | −1 | −1 | 0 | 9.04 |
21 | 0 | 1 | −1 | 0 | 11.98 |
22 | 1 | 0 | 0 | 1 | 10.26 |
23 | 0 | 0 | 0 | 0 | 15.13 |
24 | 1 | 0 | 0 | −1 | 11.57 |
25 | 0 | 0 | −1 | 1 | 12.34 |
26 | 0 | 1 | 1 | 0 | 11.07 |
27 | 0 | 0 | 0 | 0 | 15.9 |
28 | 1 | −1 | 0 | 0 | 12.41 |
29 | -1 | 0 | 0 | 1 | 11.59 |
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 111.82 | 14 | 7.99 | 40.80 | <0.0001 ** |
X1-extraction temperature | 1.94 | 1 | 1.94 | 9.93 | 0.0071 ** |
X2-Extraction time | 1.56 | 1 | 1.56 | 7.98 | 0.0135* |
X3-liquid-solid ratio | 1.89 | 1 | 1.90 | 9.68 | 0.0076 ** |
X4-ultrasonic power | 0.41 | 1 | 0.41 | 2.08 | 0.1713 |
X1X2 | 3.01 | 1 | 3.01 | 15.38 | 0.0015 ** |
X1X3 | 1.65 | 1 | 1.65 | 8.44 | 0.0115* |
X1X4 | 2.18 | 1 | 2.18 | 11.12 | 0.0049 ** |
X2X3 | 3.29 | 1 | 3.29 | 16.83 | 0.0011 ** |
X2X4 | 5.64 | 1 | 5.64 | 28.81 | <0.0001 ** |
X3X4 | 8.38 | 1 | 8.38 | 42.81 | <0.0001 ** |
X12 | 35.59 | 1 | 35.59 | 181.78 | <0.0001 ** |
X22 | 27.19 | 1 | 27.19 | 138.88 | <0.0001 ** |
X32 | 35.13 | 1 | 35.13 | 179.46 | <0.0001 ** |
X42 | 30.05 | 1 | 30.05 | 153.49 | <0.0001 ** |
Residual | 2.74 | 14 | 0.20 | ||
Lack of Fit | 1.75 | 10 | 0.18 | 0.71 | 0.6989 |
Pure Error | 0.99 | 4 | 0.245 | ||
Cor Total | 114.56 | 28 | |||
R2 = 0.9761; Adj R2 = 0.9522; CV = 3.73%; Adeq Precision = 20.454 |
Sample | Concentration (μg/mL) | Clotting Time(s) | ||
---|---|---|---|---|
APTT | PT | TT | ||
Control a | 28.0 ± 0.3 b | 11.3 ± 0.1 | 17.7 ± 0.1 | |
Heparin c | 2.0 | 48.7 ± 0.4 | 67.9 ± 0.2 | 32.7 ± 0.3 |
aAAP-1 | 12.5 | 26.2 ± 0.3 | 16.1 ± 0.2 ** | 20.3 ± 0.1 ** |
25.0 | 27.5 ± 0.4 | 26.6 ± 0.5 ** | 21.8 ± 0.1 ** | |
50.0 | 47.3 ± 1.7 ** | 73.7 ± 0.9 ** | 28.2 ± 0.2 ** |
Independent Variables | Symbol | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Extraction temperature (°C) | X1 | 60 | 70 | 80 |
Extraction time (min) | X2 | 20 | 25 | 30 |
Liquid-solid ratio (mL/g) | X3 | 80 | 100 | 120 |
Ultrasonic power (W) | X4 | 180 | 225 | 270 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, C.; Wang, Z.; Shi, J. Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula-judae. Molecules 2020, 25, 710. https://doi.org/10.3390/molecules25030710
Bian C, Wang Z, Shi J. Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula-judae. Molecules. 2020; 25(3):710. https://doi.org/10.3390/molecules25030710
Chicago/Turabian StyleBian, Chun, Zhenyu Wang, and John Shi. 2020. "Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula-judae" Molecules 25, no. 3: 710. https://doi.org/10.3390/molecules25030710
APA StyleBian, C., Wang, Z., & Shi, J. (2020). Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula-judae. Molecules, 25(3), 710. https://doi.org/10.3390/molecules25030710