Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization of EPE
2.2. HPLC Analysis of Anthocyanins
2.3. Influence of EPE Addition on Beer Characteristics
2.4. Phytochemical Characterization of Beer Enriched with EPE
2.5. Antioxidant Activity
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Eggplant Peel Extract (EPE)
3.3. Brewing Process
3.4. Physicochemical Parameters of Beer
3.5. Total Monomeric Anthocyanin Content (TMA)
3.6. Total Flavonoid Content (TFC)
3.7. Total Phenolic Content (TPC)
3.8. DPPH Radical Scavenging Activity
3.9. ABTS Radical Cation Scavenging Activity
3.10. HPLC Analysis of Anthocyanins
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tafulo, P.A.R.; Queirós, R.B.; Delerue-Matos, C.M.; Sales, M.G.F. Control and comparison of the antioxidant capacity of beers. Food Res. Int. 2010, 43, 1702–1709. [Google Scholar] [CrossRef] [Green Version]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; et al. Mediterranean way of drinking and longevity. Crit. Rev. Food Sci. Nutr. 2016, 56, 635–640. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT-Food Sci. Technol. 2019, 103, 139–146. [Google Scholar] [CrossRef]
- Sierksma, A.; Kok, F.J. Beer and health: From myths to science. Eur. J. Clin. Nutr. 2012, 66, 869–870. [Google Scholar] [CrossRef] [Green Version]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Zhao, H.; Fan, W.; Dong, J.; Lu, J.; Chen, J.; Shan, L.; Lin, Y.; Kong, K. Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 2008, 107, 296–304. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Ulloa, P.A.; Vidal, J.; Ávila, M.I.; Labbe, M.; Cohen, S.; Salazar, F.N. Effect of the addition of propolis extract on bioactive compounds and antioxidant activity of craft beer. J. Chem. 2017, 2017, 6716053. [Google Scholar] [CrossRef] [Green Version]
- Gorjanovic, S.Z.; Novakovic, M.M.; Potkonjak, N.I.; Ida, L.C.; Suznievic, D.Z. Application of a novel antioxidative assay in beer analysis and brewing process monitoring. J. Agric. Food Chem. 2010, 58, 744–751. [Google Scholar] [CrossRef]
- Sanna, V.; Pretti, L. Effect of wine barrel ageing or sapa addition on total polyphenol content and antioxidant activities of some Italian craft beers. Int. J. Food Sci. Technol. 2015, 50, 700–707. [Google Scholar] [CrossRef]
- Ditrych, M.; Kordialik-Bogacka, E.; Czyzowska, A. Antiradical and reducing potential of commercial beers. Czech J. Food Sci. 2015, 33, 261–266. [Google Scholar] [CrossRef]
- Somawathi, K.M.; Rizliya, V.; Wijesinghe, D.G.N.G.; Madhujith, T. Antioxidant activity and total phenolic content of different skin coloured brinjal (Solanum melongena). Trop. Agric. Res. 2014, 26, 152–161. [Google Scholar] [CrossRef]
- Akanitapichat, P.; Phraibung, K.; Nuchklang, K.; Prompitakkul, S. Antioxidant and hepatoprotective activities of five eggplant varieties. Food Chem. Toxicol. 2010, 48, 3017–3021. [Google Scholar] [CrossRef]
- Han, S.W.; Tae, J.; Kim, J.-A.; Kim, D.C.; Seo, G.S.; Yun, K.J.; Choi, S.C.; Kim, T.H.; Nah, Y.H.; Lee, Y.M. The aqueous extract of Solanum melongena inhibits PAR2 agonist-induced inflammation. Clin. Chim. Acta 2003, 328, 39–44. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Jeong, H.-J.; Na, H.-J. Inhibition of immunologic and nonimmunologic stimulation-mediated anaphylactic reactions by water extract of white eggplant (Solanum melongena). Pharmacol. Res. 2001, 43, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Okmen, B.; Sigva, H.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total antioxidant activity and total phenolic contents in different Turkish eggplant (Solanum melongena L.) cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; Carputo, D.; et al. Comparative Phytochemical Characterization, Genetic Profile, and Antiproliferative Activity of Polyphenol-Rich Extracts from Pigmented Tubers of Different Solanum tuberosum Varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [Green Version]
- Dranca, F.; Oroian, M. Total monomeric anthocyanin, total phenolic content and antioxidant activity of extracts from eggplant (Solanum melongena L.) peel using ultrasonic treatments. J. Food Process Eng. 2015, 40, e12312. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Medouni, L.; Medouni-Adrar, S.; Arkoub, L.; Madani, K. Effect of solvents extraction on phenolic content and antioxidant activity of the by-product of eggplant. Ind. Crop. Prod. 2013, 49, 668–674. [Google Scholar] [CrossRef]
- Todaro, A.; Cimino, F.; Rapisarda, P.; Catalano, A.E.; Barbagallo, R.N.; Spagna, G. Recovery of anthocyanins from eggplant peel. Food Chem. 2009, 114, 434–439. [Google Scholar] [CrossRef]
- Kaur, C.; Nagal, S.; Nishad, J.; Kumar, R.; Sarika. Evaluating eggplant (Solanum melongena L.) genotypes for bioactive properties: A chemometric approach. Food Res. Int. 2014, 60, 205–211. [Google Scholar] [CrossRef]
- Shahidi, F.; Chandrasekara, A.; Zhong, Y. Bioactive phytochemicals in vegetables. In Handbook of Vegetables & Vegetable Processing; Sinha, N.K., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 128–129. [Google Scholar]
- Jung, E.J.; Bae, M.S.; Jo, E.K.; Jo, Y.H.S.; Lee, J.C. Antioxidant activity of different parts of eggplant. J. Med. Plants Res. 2011, 5, 4610–4615. [Google Scholar]
- Abramovič, H.; Grobin, B.; Poklar Ulrih, N.; Cigić, B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 4608405. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Ferarsa, S.; Zhang, W.; Moulai-Mostefa, N.; Din, L.; Jaffrin, M.Y.; Grimib, N. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food Bioprod. Process. 2018, 109, 19–28. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Copaciu, F.; Coman, V. Identification of anthocyanins and anthocyanidins from berry fruits by chromatographic and spectroscopic techniques to establish the juice authenticity from market. JPC-J. Planar Chromat. 2012, 25, 534–541. [Google Scholar] [CrossRef]
- Zaro, M.J.; Keunchkarian, S.; Chaves, A.R.; Vicente, A.R.; Concellón, A. Changes in bioactive compounds and response to postharvest storage conditions in purple eggplants as affected by fruit developmental stage. Postharvest Biol. Technol. 2014, 96, 110–117. [Google Scholar] [CrossRef]
- Dordevic, S.; Popovic, D.; Despotovic, S.; Veljovic, M.; Atanackovic, M.; Cvejic, J.; Nedovic, V.; Leskosek-Cukalovik, I. Extracts of medicinal plants as functional beer additives. Chem. Ind. Chem. Eng. Q. 2016, 22, 301–308. [Google Scholar]
- Smedley, S.M. Discrimination between beers with small colour differences using the Cielab colour space. J. Inst. Brew. 1995, 101, 195–201. [Google Scholar] [CrossRef]
- Castaneda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Martínez, A.; Vegara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Pai, T.; Sawant, S.Y.; Ghatak, A.A.; Chaturvedi, P.A.; Gupte, A.M.; Desai, N.S. Characterization of Indian beers: Chemical composition and antioxidant potential. J. Food Sci. Technol.-Mysore 2015, 52, 414–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef]
- Li, H.; Zhao, M.; Cui, C.; Sun, W.; Zhao, H. Antioxidant activity and typical ageing compounds: Their evolutions and relationships during the storage of lager beers. Int. J. Food Sci. Technol. 2016, 51, 2026–2033. [Google Scholar] [CrossRef]
- Kuchel, L.; Brody, A.L.; Wicker, L. Oxygen and its reactions in beer. Packag. Technol. Sci. 2006, 19, 25–32. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Effect of thermal treatment on phenolic compounds from plum (Prunus domestica) extracts—A kinetic study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- ASBC Methods of Analysis. In American Society of Brewing Chemists; The Society: St. Paul, MN, USA, 2009.
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colourants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar]
Sample Availability: Not available. |
Bioactive Compounds | ||
TMA (mg D3G/g EPE) | 1.38 ± 0.02 | |
TFC (mg CE/g EPE) | 17.06 ± 2.85 | |
TPC (mg GAE/g EPE) | 39.41 ± 4.65 | |
Antioxidant Activity | ||
DPPH | Inhibition, % | 30.05 ± 0.62 |
mmol TE/mL | 0.45 ± 0.01 | |
ABTS | Inhibition, % | 19.96 ± 0.80 |
mmol TE/mL | 0.032 ± 0.01 |
Parameter | Beer Control | Beer Enriched with EPE (mg/mL) | ||
---|---|---|---|---|
B/EPE 1 | B/EPE 5 | B/EPE 10 | ||
Alcohol (% mass) | 5.25 ± 0.06 | 5.20 ± 0.21 | 5.23 ± 0.56 | 5.25 ± 0.39 |
Alcohol (% vol) | 6.55 ± 0.03 | 6.50 ± 0.82 | 6.52 ± 0.95 | 6.54 ± 0.23 |
Real extract (°P) | 5.05 ± 0.07 | 5.01 ± 0.07 | 5.05 ± 0.07 | 5.03 ± 0.07 |
Wort extract (°P) | 15.00 ± 0.01 | 14.80 ± 0.62 | 15.01 ± 0.04 | 15.00 ± 0.45 |
CO2 (g/100 mL) | 0.46 ± 0.03 | 0.43 ± 0.29 | 0.44 ± 0.90 | 0.45 ± 0.71 |
pH | 4.78 ± 0.04 | 4.78 ± 0.04 | 4.78 ± 0.04 | 4.78 ± 0.04 |
Sample | Storage Time, days | Color Parameters | ||
---|---|---|---|---|
L* | A* | B* | ||
Control | 0 | 90.64 ± 0.28 | −2.07 ± 0.03 | 18.47 ± 0.70 |
7 | 89.99 ± 0.70 | −1.63 ± 0.05 | 18.08 ± 1.73 | |
14 | 89.65 ± 0.83 | −1.35 ± 0.11 | 18.45 ± 0.50 | |
21 | 87.95 ± 0.02 | −1.17 ± 0.01 | 19.10 ± 0.11 | |
B/EPE 1 | 0 | 88.00 ± 0.76 | −0.80 ± 0.08 | 19.23 ± 0.72 |
7 | 88.51 ± 0.87 | −0.77 ± 0.09 | 18.12 ± 1.56 | |
14 | 87.92 ± 0.96 | −0.58 ± 0.11 | 17.38 ± 1.80 | |
21 | 87.86 ± 0.00 | −0.47 ± 0.01 | 15.62 ± 0.08 | |
B/EPE 5 | 0 | 81.10 ± 0.81 | 3.94 ± 0.35 | 19.59 ± 0.74 |
7 | 81.79 ± 1.06 | 3.02 ± 0.45 | 19.67 ± 0.58 | |
14 | 84.93 ± 1.06 | 2.53 ± 0.39 | 18.37 ± 1.26 | |
21 | 86.67 ± 0.08 | 1.35 ± 0.01 | 14.66 ± 0.08 | |
B/EPE 10 | 0 | 74.67 ± 0.60 | 9.86 ± 0.35 | 21.76 ± 0.67 |
7 | 75.44 ± 1.20 | 8.58 ± 0.32 | 20.73 ± 0.22 | |
14 | 74.51 ± 0.72 | 8.80 ± 0.37 | 19.74 ± 0.62 | |
21 | 77.56 ± 0.03 | 7.04 ± 0.02 | 19.30 ± 0.40 |
Sample | Storage Time (days) | Bioactive Compounds | ||
---|---|---|---|---|
TMA (mg D3G/mL) | TFC (mg CE/mL) | TPC (mg GAE/mL) | ||
Control | 0 | nd | 0.065 ± 0.006 | 0.426 ± 0.012 |
7 | nd | 0.065 ± 0.002 | 0.419 ± 0.000 | |
14 | nd | 0.063 ± 0.013 | 0.416 ± 0.007 | |
21 | nd | 0.064 ± 0.004 | 0.417 ± 0.004 | |
B/EPE 1 | 0 | 0.011 ± 0.001 | 0.075 ± 0.007 | 0.439 ± 0.013 |
7 | 0.010 ± 0.003 | 0.076 ± 0.001 | 0.435 ± 0.001 | |
14 | 0.008 ± 0.001 | 0.074 ± 0.002 | 0.434 ± 0.005 | |
21 | 0.007 ± 0.003 | 0.070 ± 0.001 | 0.433 ± 0.007 | |
B/EPE 5 | 0 | 0.044 ± 0.002 | 0.128 ± 0.003 | 0.544 ± 0.007 |
7 | 0.042 ± 0.001 | 0.125 ± 0.005 | 0.525 ± 0.011 | |
14 | 0.035 ± 0.001 | 0.127 ± 0.001 | 0.523 ± 0.005 | |
21 | 0.030 ± 0.001 | 0.129 ± 0.007 | 0.519 ± 0.016 | |
B/EPE 10 | 0 | 0.083 ± 0.002 | 0.171 ± 0.009 | 0.631 ± 0.003 |
7 | 0.073 ± 0.002 | 0.173 ± 0.001 | 0.620 ± 0.005 | |
14 | 0.071 ± 0.006 | 0.175 ± 0.001 | 0.613 ± 0.005 | |
21 | 0.068 ± 0.002 | 0.175 ± 0.003 | 0.610 ± 0.003 |
Samples | Storage Time (days) | Antioxidant Activity | |||
---|---|---|---|---|---|
DDPH (%) | DPPH (mmol TE/mL) | ABTS (%) | ABTS (mmol TE/mL) | ||
Control | 0 | 77.706 ± 0.899 | 1.200 ± 0.020 | 57.288 ± 0.371 | 0.090 ± 0.001 |
7 | 78.502 ± 2.137 | 1.293 ± 0.041 | 50.890 ± 2.209 | 0.089 ± 0.004 | |
14 | 59.947 ± 0.191 | 0.990 ± 0.004 | 49.867 ± 0.403 | 0.079 ± 0.001 | |
21 | 56.412 ± 1.396 | 0.926 ± 0.019 | 49.016 ± 0.521 | 0.086 ± 0.001 | |
B/EPE 1 | 0 | 80.549 ± 0.118 | 1.244 ± 0.007 | 58.789 ± 0.405 | 0.093 ± 0.001 |
7 | 78.685 ± 0.852 | 1.296 ± 0.017 | 53.824 ± 2.005 | 0.095 ± 0.004 | |
14 | 78.186 ± 1.111 | 1.279 ± 0.018 | 52.178 ± 0.481 | 0.084 ± 0.001 | |
21 | 78.047 ± 0.562 | 1.287 ± 0.015 | 53.914 ± 0.413 | 0.095 ± 0.000 | |
B/EPE 5 | 0 | 83.325 ± 0.167 | 1.294 ± 0.005 | 73.644 ± 2.643 | 0.129 ± 0.004 |
7 | 79.396 ± 0.108 | 1.308 ± 0.004 | 71.716 ± 0.449 | 0.124 ± 0.001 | |
14 | 78.165 ± 0.558 | 1.296 ± 0.008 | 61.144 ± 0.916 | 0.106 ± 0.002 | |
21 | 78.048 ± 0.199 | 1.287 ± 0.009 | 57.426 ± 3.096 | 0.101 ± 0.005 | |
B/EPE 10 | 0 | 85.822 ± 0.188 | 1.333 ± 0.001 | 80.019 ± 3.167 | 0.140 ± 0.005 |
7 | 79.839 ± 0.367 | 1.315 ± 0.012 | 73.186 ± 0.810 | 0.126 ± 0.001 | |
14 | 79.573 ± 0.309 | 1.308 ± 0.010 | 63.685 ± 0.169 | 0.110 ± 0.000 | |
21 | 79.158 ± 0.092 | 1.306 ± 0.006 | 60.780 ± 0.653 | 0.107 ± 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horincar, G.; Enachi, E.; Bolea, C.; Râpeanu, G.; Aprodu, I. Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules 2020, 25, 731. https://doi.org/10.3390/molecules25030731
Horincar G, Enachi E, Bolea C, Râpeanu G, Aprodu I. Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules. 2020; 25(3):731. https://doi.org/10.3390/molecules25030731
Chicago/Turabian StyleHorincar, Georgiana, Elena Enachi, Carmen Bolea, Gabriela Râpeanu, and Iuliana Aprodu. 2020. "Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract" Molecules 25, no. 3: 731. https://doi.org/10.3390/molecules25030731
APA StyleHorincar, G., Enachi, E., Bolea, C., Râpeanu, G., & Aprodu, I. (2020). Value-Added Lager Beer Enriched with Eggplant (Solanum melongena L.) Peel Extract. Molecules, 25(3), 731. https://doi.org/10.3390/molecules25030731