Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. MAE-Brine Kinetics Modelling
2.1.1. Second-Order Rate Law
2.1.2. Empirical Model—Patricelli Kinetic Model
2.2. Lipid Quality Results
2.3. Morphology of the Microalgae Cells
3. Materials and Methods
3.1. Materials
3.2. Microwave-Assisted Extraction (MAE)
3.2.1. Microwave Extractor Setup
3.2.2. Experimental Procedures
3.2.3. Transesterification of Lipid
3.2.4. FAME Analysis Using GC-FID
3.3. Kinetic Models
3.3.1. Fick’s Law
3.3.2. First-Order Rate Law
3.3.3. Second-Order Rate Law
3.3.4. Patricelli Empirical Model
- Washing: the lipids are rapidly extracted through washing with the extraction solvent.
- Diffusion: the remaining lipids are slowly removed through diffusion to the extraction solvent.
3.4. Statistical Analysis
3.5. Activation Energy
3.6. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sukenik, A.; Zmora, O.; Carmeli, Y. Biochemical Quality of Marine Unicellular Algae with Special Emphasis on Lipid Composition. II. Nannochloropsis sp. Aquaculture 1993, 117, 313–326. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yoo, C.; Jun, S.Y.; Ahn, C.Y.; Oh, H.M. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Dvoretsky, D.; Dvoretsky, S.; Temnov, M.; Akulinin, E.; Peshkova, E. Enhanced Lipid Extraction from Microalgae Chlorella Vulgaris Biomass: Experiments, Modelling, Optimization. Chem. Eng. Trans. 2016, 49, 175–180. [Google Scholar]
- Amarni, F.; Kadi, H. Kinetics Study of Microwave-Assisted Solvent Extraction of Oil from Olive Cake Using Hexane: Comparison with the Conventional Extraction. Innov. Food Sci. Emerg. 2010, 11, 322–327. [Google Scholar] [CrossRef]
- Refaat, A.; El Sheltawy, S.; Sadek, K. Optimum Reaction Time; Performance and Exhaust Emissions of Biodiesel Produced by Microwave Irradiation. Int. J. Environ. Sci. Technol. 2008, 5, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Zghaibi, N.; Omar, R.; Kamal, M.; Mazlina, S.; Biak, A.; Radiah, D.; Harun, R. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae Nannochloropsis sp. Molecules 2019, 24, 3581. [Google Scholar] [CrossRef] [Green Version]
- Crossley, J.; Aguilera, J.M. Modeling the Effect of Microstructure on Food Extraction. J. Food Process Eng. 2001, 24, 161–177. [Google Scholar] [CrossRef]
- Cárcel, J.A.; García-Pérez, J.V.; Mulet, A.; Rodríguez, L.; Riera, E. Ultrasonically Assisted Antioxidant Extraction from Grape Stalks and Olive Leaves. Physics Procedia 2010, 3, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Boussetta, N.; Vorobiev, E.; Deloison, V.; Pochez, F.; Falcimaigne-Cordin, A.; Lanoisellé, J.L. Valorisation of Grape Pomace by the Extraction of Phenolic Antioxidants: Application of High Voltage Electrical Discharges. Food Chem. 2011, 128, 364–370. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C. Modeling and Kinetics Study of Conventional and Assisted Batch Solvent Extraction. Chem. Eng. Res. Des. 2014, 92, 1169–1186. [Google Scholar] [CrossRef]
- Díaz, M.S.; Brignole, E.A. Modeling and Optimization of Supercritical Fluid Processes. J. Supercrit. Fluid 2009, 47, 611–618. [Google Scholar] [CrossRef]
- Oliveira, E.L.; Silvestre, A.J.; Silva, C.M. Review of Kinetic Models for Supercritical Fluid Extraction. Chem. Eng. Res. Des. 2011, 89, 1104–1117. [Google Scholar] [CrossRef]
- Fuad, F.M.; Karim, K.A. Kinetics Study of Oil Extraction from Calophyllum inophyllum Seeds Using Ultrasonic-Assisted Extraction Technique. J. Phys. Sci. 2017, 28, 57–69. [Google Scholar] [CrossRef]
- Spigno, G.; De Faveri, D. Microwave-Assisted Extraction of Tea Phenols: A Phenomenological Study. J. Food Eng. 2009, 93, 210–217. [Google Scholar] [CrossRef]
- Patil, D.M.; Akamanchi, K.G. Ultrasound-Assisted Rapid Extraction and Kinetic Modelling of Influential Factors: Extraction of Camptothecin from Nothapodytes nimmoniana Plant. Ultrason. Sonochem. 2017, 37, 582–591. [Google Scholar] [CrossRef]
- Perez, E.E.; Carelli, A.A.; Crapiste, G.H. Temperature-Dependent Diffusion Coefficient of Oil from Different Sunflower Seeds During Extraction with Hexane. J. Food Eng. 2011, 105, 180–185. [Google Scholar] [CrossRef]
- Kandiah, M.; Spiro, M. Extraction of Ginger Rhizome: Kinetic Studies with Supercritical Carbon Dioxide. Int. J. Environ. Sci. Technol. 1990, 25, 328–338. [Google Scholar] [CrossRef]
- Chen, G.; Chen, H. Extraction and Deglycosylation of Flavonoids from Sumac Fruits Using Steam Explosion. Food Chem. 2011, 126, 1934–1938. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction Modeling and Activities of Antioxidants from Pomegranate Marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Rakotondramasy-Rabesiaka, L.; Havet, J.-L.; Porte, C.; Fauduet, H. Solid–Liquid Extraction of Protopine from Fumaria officinalis, L.—Analysis Determination, Kinetic Reaction and Model Building. Sep. Purif. Technol. 2007, 54, 253–261. [Google Scholar] [CrossRef]
- Osburn, J.O.; Katz, D.L.V. Structure as a Variable in the Application of Diffusion Theory to Extraction; University of Michigan: Ann Arbor, MI, USA, 1944. [Google Scholar]
- Patricelli, A.; Assogna, A.; Casalaina, A.; Emmi, E.; Sodini, G. Fattori Che Influenzano L’estrazione Dei Lipidi Da Semi Decorticati di Girasole. Riv. Ital. Sostanze Grasse 1979, 56, 136–142. [Google Scholar]
- George, C.S.; Douglas, G.M. Kinetics of Oil Extraction from Canola (rapeseed). Can. J. Chem. Eng. 1986, 64, 80–86. [Google Scholar]
- Abdullah, M.; Koc, A.B. Kinetics of Ultrasound-Assisted Oil Extraction from Black Seed (Nigella sativa). J. Food Process. Preserv. 2013, 37, 814–823. [Google Scholar] [CrossRef]
- Xi, J.; He, L.; Yan, L. Kinetic Modeling of Pressure-Assisted Solvent Extraction of Polyphenols from Green Tea in Comparison with the Conventional Extraction. Food Chem. 2015, 166, 287–291. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Amelia, P.D.; Admiralia, C.; Mahfud, M. Kinetics Study of Oil Extraction from Citrus Auranticum, L. by Solvent-Free Microwave Extraction. Commun. Sci. Technol. 2016, 1. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Harouna-Oumarou, H.A.; Fauduet, H.; Porte, C. Kinetics and Model Building of Leaching of Water-Soluble Compounds of Tilia Sapwood. Sep. Purif. Technol. 2005, 45, 169–173. [Google Scholar] [CrossRef]
- Uhm, J.T.; Yoon, W.B. Effects of High-Pressure Process on Kinetics of Leaching Oil from Soybean Powder Using Hexane in Batch Systems. J. Food Sci. 2011, 76, E444–E449. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, C. Microwave-Assisted Extraction for Bioactive Compounds; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kusuma, H.; Mahfud, M. Comparison of Kinetic Models of Oil Extraction from Sandalwood by Microwave-Assisted Hydrodistillation. Int. Food Res. J. 2017, 24, 1697–1702. [Google Scholar]
- Rainer, A.B.; Agnieszka, H.; Thomas, H.; Helmut, G. Effect of Sodium Chloride on a Lipid Bilayer. Biophys. J. 2003, 85, 1647–1655. [Google Scholar]
- Mobeen, R.; Elisabeth, V. Effects of Sodium Chloride on Membrane Fusion and on the Formation of Aggregates of Potassium Channel KcsA in Membrane. Biophys. Chem. 2009, 142, 46–54. [Google Scholar]
- Choi, S.-A.; Oh, Y.-K.; Jeong, M.-J.; Seung, W.K.; Lee, J.-S.; Park, J.-Y. Effects of Ionic Liquid Mixtures on Lipid Extraction from Chlorella Vulgaris. Renew. Energ. 2014, 65, 169–174. [Google Scholar] [CrossRef]
- Pan, J.; Muppaneni, T.; Sun, Y.; Reddy, H.K.; Fu, J.; Lu, X.; Deng, S. Microwave-Assisted Extraction of Lipids from Microalgae Using an Ionic Liquid Solvent [BMIM][HSO4]. Fuel 2016, 178, 49–55. [Google Scholar] [CrossRef]
- Sidell, B.D.; Hazel, J.R. Temperature Affects the Diffusion of Small Molecules Through Cytosol of Fish Muscle. J. Exp. Biol. 1987, 129, 191–203. [Google Scholar]
- Anwar, J.; Shafique, U.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J.M.; Ashraf, U.; Ashraf, S. Microwave Chemistry: Effect of Ions on Dielectric Heating in Microwave Ovens. Arab. J. Chem. 2015, 8, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Schneeberger, R.; Villarroez, M.; Drapela, N.; Caire, F.; Castillo, M. Cinética de Extracción de Aceite de Avellana. Grasas y Aceites 1988, 39, 151–154. [Google Scholar]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil Extraction from Scenedesmus obliquus Using a Continuous Microwave System—Design, Optimization, and Quality Characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, V.; Vasishtha, A. Changes in the Characteristics and Composition of Oils during Deep-Fat Frying. J. Am. Oil Chem. Soc. 1996, 73, 499–506. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Assessment of Conventional and Microwave Heating Induced Degradation of Carotenoids in Olive Oil by VIS Raman Spectroscopy and Classical Methods. Food Res. Int. 2010, 43, 694–700. [Google Scholar] [CrossRef]
- Camille, J.; Jean-René, C.; Valérie, T.; Anne-Laure, G.; Jean-Baptiste, B.; Nicolas, J.; Raymond, K.; Jean-Paul, C.; Laurent, P. Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium purpureum. Appl. Biochem. Biotechnol. 2015, 175, 1–15. [Google Scholar]
- Lewis, T.; Nichols, P.D.; McMeekin, T.A. Evaluation of Extraction Methods for Recovery of Fatty Acids from Lipid-Producing Microheterotrophs. J. Microbiol. Methods 2000, 43, 107–116. [Google Scholar] [CrossRef]
- Moore, D.S.; Notz, W.; Fligner, M.A. The Basic Practice of Statistics; WH Freeman: New York, NY, USA, 2013. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Time (min) | Lipid Yield (%) | ||||
---|---|---|---|---|---|
60 °C | 70 °C | 80 °C | 90 °C | 100 °C | |
1 | 1.00 ± 0.11 | 1.08 ± 0.09 | 1.45 ± 0.04 | 2.99 ± 0.11 | 5.26 ± 0.12 |
3 | 1.53 ± 0.02 | 1.67 ± 0.01 | 2.94 ± 0.08 | 5.02 ± 0.03 | 6.09 ± 0.21 |
6 | 2.71 ± 0.15 | 3.15 ± 0.13 | 4.58 ± 0.01 | 7.47 ± 0.05 | 11.80 ± 0.03 |
9 | 3.59 ± 0.02 | 3.85 ± 0.03 | 5.78 ± 0.02 | 10.78 ± 0.08 | 14.00 ± 0.03 |
12 | 3.81 ± 0.04 | 4.66 ± 0.03 | 6.99 ± 0.10 | 11.93 ± 0.01 | 14.60 ± 0.11 |
15 | 4.39 ± 0.09 | 5.13 ± 0.05 | 8.39 ± 0.04 | 12.40 ± 0.01 | 15.00 ± 0.04 |
18 | 4.97 ± 0.03 | 5.64 ± 0.05 | 9.09 ± 0.03 | 12.97 ± 0.03 | 15.30 ± 0.10 |
21 | 5.34 ± 0.01 | 5.93 ± 0.10 | 9.25 ± 0.10 | 13.01 ± 0.01 | 15.40 ± 0.07 |
24 | 6.07 ± 0.02 | 6.22 ± 0.04 | 9.51 ± 0.11 | 13.35 ± 0.01 | 15.70 ± 0.11 |
27 | 6.29 ± 0.01 | 6.39 ± 0.12 | 9.82 ± 0.04 | 13.50 ± 0.02 | 16.00 ± 0.05 |
30 | 6.48 ± 0.01 | 6.52 ± 0.02 | 10.07 ± 0.05 | 13.73 ± 0.01 | 16.10 ± 0.02 |
Extraction Temperature (°C) | Kinetic Model | |||||||
---|---|---|---|---|---|---|---|---|
Fick’s Law | First-Order Rate Law | Second-Order Rate Law | Patricelli Empirical Model | |||||
R2 | MRPD | R2 | MRPD | R2 | MRPD | R2 | MRPD | |
60 | 0.977 | 10.645 | 0.828 | 21.037 | 0.933 | 9.942 | 0.977 | 8.666 |
70 | 0.927 | 17.759 | 0.764 | 25.442 | 0.971 | 6.297 | 0.987 | 6.749 |
80 | 0.927 | 18.058 | 0.747 | 26.615 | 0.975 | 6.284 | 0.967 | 7.729 |
90 | 0.838 | 24.045 | 0.670 | 24.071 | 0.985 | 7.888 | 0.977 | 6.767 |
100 | 0.788 | 24.109 | 0.619 | 21.248 | 0.991 | 6.786 | 0.955 | 6.926 |
Extraction Temperature °C | Second-Order Rate Law Coefficient (min−1) | Yield At Saturation (%) |
---|---|---|
k2 | ||
60 | 0.008 | 9.06 |
70 | 0.010 | 8.82 |
80 | 0.010 | 13.75 |
90 | 0.011 | 16.45 |
100 | 0.016 | 18.08 |
Extraction Temperature (°C) | Mass Transfer Coefficients (min−1) | Yield (%) | |||
---|---|---|---|---|---|
kw | kd | Mw | Md | ||
60 | 0.091 | 0.035 | 5.33 | 1.50 | 6.83 |
70 | 0.099 | 0.047 | 5.47 | 1.61 | 7.08 |
80 | 0.103 | 0.051 | 8.47 | 2.01 | 9.48 |
90 | 0.216 | 0.074 | 11.38 | 2.01 | 13.39 |
100 | 0.245 | 0.084 | 13.93 | 2.25 | 16.18 |
Time (min) | Extraction Rate (min−1) | ||||
---|---|---|---|---|---|
60 °C | 70 °C | 80 °C | 90 °C | 100 °C | |
0 | 0.54 | 0.62 | 0.98 | 2.60 | 3.59 |
1 | 0.49 | 0.56 | 0.88 | 2.11 | 2.84 |
3 | 0.42 | 0.47 | 0.73 | 1.40 | 1.78 |
6 | 0.32 | 0.36 | 0.55 | 0.76 | 0.89 |
9 | 0.25 | 0.27 | 0.41 | 0.43 | 0.46 |
12 | 0.19 | 0.21 | 0.31 | 0.24 | 0.25 |
15 | 0.16 | 0.16 | 0.23 | 0.14 | 0.14 |
18 | 0.12 | 0.12 | 0.18 | 0.09 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zghaibi, N.; Omar, R.; Mustapa Kamal, S.M.; Awang Biak, D.R.; Harun, R. Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp. Molecules 2020, 25, 784. https://doi.org/10.3390/molecules25040784
Zghaibi N, Omar R, Mustapa Kamal SM, Awang Biak DR, Harun R. Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp. Molecules. 2020; 25(4):784. https://doi.org/10.3390/molecules25040784
Chicago/Turabian StyleZghaibi, Nour, Rozita Omar, Siti Mazlina Mustapa Kamal, Dayang Radiah Awang Biak, and Razif Harun. 2020. "Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp." Molecules 25, no. 4: 784. https://doi.org/10.3390/molecules25040784
APA StyleZghaibi, N., Omar, R., Mustapa Kamal, S. M., Awang Biak, D. R., & Harun, R. (2020). Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp. Molecules, 25(4), 784. https://doi.org/10.3390/molecules25040784