Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. Bioactivity Assays
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Phytochemical Analysis
4.2.1. Reagents and Reference Substances
4.2.2. Liquid Chromatography
4.2.3. Mass Spectrometry
4.2.4. Identification and Quantification
4.3. Bioactivity Assays
4.3.1. Chemicals
4.3.2. Neutrophil Polymorphonuclear Granulocyte (PMN) Isolation
4.3.3. Cytotoxicity
4.3.4. IL-8, TNF-α, and IL-1β Production by PMNs
4.4. Statistical Evaluations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zielińska, S.; Jezierska-Domaradzka, A.; Wójciak-Kosior, M.; Sowa, I.; Junka, A.; Matkowski, A.M. Greater Celandine’s ups and downs—21 centuries of medicinal uses of Chelidonium majus from the viewpoint of today’s pharmacology. Front. Pharm. 2018, 9, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, S.; Wójciak-Kosior, M.; Płachno, B.J.; Sowa, I.; Włodarczyk, M.; Matkowski, A. Quaternary alkaloids in Chelidonium majus in vitro cultures. Ind. Crop. Prod. 2018, 123, 17–24. [Google Scholar] [CrossRef]
- Zielińska, S.; Wójciak-Kosior, M.; Dziągwa-Becker, M.; Gleńsk, M.; Sowa, I.; Fijałkowski, K.; Rurańska-Smutnicka, D.; Matkowski, A.; Junka, A. The Activity of Isoquinoline Alkaloids and Extracts from Chelidonium majus against Pathogenic Bacteria and Candida sp. Toxins 2019, 11, 406. [Google Scholar] [CrossRef] [Green Version]
- European Pharmacopoeia 9th Edition 2019, 9.7, Greater Celandine, Version Date 07/2012, Monographhy Number 1861. European Directorate for the Quality of Medicines and Healthcare, Strasbourg, France. Available online: online6.edqm.eu/ep907/ (accessed on 1 January 2019).
- Barreto, M.C.; Pinto, R.E.; Arrabaça, J.D.; Pavão, M.L. Inhibition of mouse liver respiration by Chelidonium majus isoquinoline alkaloids. Toxicol. Lett. 2003, 146, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenfeld, J.M.; Kroutil, E.; Marálek, J.; Slavik, V.; Preininger, V.; Simánek, V. Antiinflammatory Activity of Quaternary Benzophenanthridine Alkaloids from Chelidonium majus. Planta Med. 1981, 43, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Och, A.; Zalewski, D.; Komsta, Ł.; Kołodziej, P.; Kocki, J.; Bogucka-Kocka, A. Cytotoxic and Proapoptotic Activity of Sanguinarine, Berberine, and Extracts of Chelidonium majus L. and Berberis thunbergii DC. toward Hematopoietic Cancer Cell Lines. Toxins 2019, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Och, A.; Szewczyk, K.; Pecio, Ł.; Stochmal, A.; Załuski, D.; Bogucka-Kocka, A. UPLC-MS/MS Profile of alkaloids with cytotoxic properties of selected medicinal plants of the Berberidaceae and Papaveraceae families. Oxid. Med. Cell. Longev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Simanek, V.; Liu, L. Carcinogenic potential of sanguinarine, a phytochemical used in ‘therapeutic’ black salve and mouthwash. Mutat. Res. Rev. Mutat. Res. 2017, 774, 46–56. [Google Scholar] [CrossRef]
- Philchenkov, A.; Kaminskyy, V.; Zavelevich, M.; Stoika, R. Apoptogenic activity of two benzophenanthridine alkaloids from Chelidonium majus L. does not correlate with their DNA damaging effects. Toxicol. In Vitro 2008, 22, 287–295. [Google Scholar] [CrossRef]
- Basu, P.; Bhowmik, D.; Suresh Kumar, G. The benzophenanthridine alkaloid chelerythrine binds to DNA by intercalation: Photophysical aspects and thermodynamic results of iminium versus alkanolamine interaction. J. Photoch. Photobiol. B Biol. 2013, 129, 57–68. [Google Scholar] [CrossRef]
- Noureini, S.K.; Wink, M. Transcriptional down regulation of hTERT and senescence induction in HepG2 cells by chelidonine. World J. Gastroenterol. 2009, 15, 3603–3610. [Google Scholar] [CrossRef] [PubMed]
- Panzer, A.; Joubert, A.M.; Bianchi, P.C.; Seegers, J.C. The antimitotic effects of Ukrain R (TM), a Chelidonium majus alkaloid derivative, are reversible in vitro. Cancer Lett. 2001, 150, 85–92. [Google Scholar] [CrossRef]
- Havelek, R.; Seifrtova, M.; Kralovec, K.; Habartova, K.; Cahlikova, L.; Rezacova, M. Chelidonine and homochelidonine induce cell death through cell cycle checkpoints and MAP kinase pathways. Nat. Prod. Commun. 2016, 12, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Inui, T.; Kawano, N.; Shitan, N.; Yazaki, K.; Kiuchi, F.; Kawahara, N.; Sato, F.; Yoshimatsu, K. Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase in transgenic Coptis japonica plants. Biol. Pharm. Bull. 2012, 35, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otani, M.; Shitan, N.; Sakai, K.; Martinoia, E.; Sato, F.; Yazaki, K. Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol. 2005, 138, 1939–1946. [Google Scholar] [CrossRef] [Green Version]
- Orland, A.; Knapp, K.; König, G.M.; Ulrich-Merzenich, G.; Knöß, W. Combining metabolomic analysis and microarray gene expression analysis in the characterization of the medicinal plant Chelidonium majus L. Phytomedicine 2014, 21, 1587–1596. [Google Scholar] [CrossRef]
- Pantano, F.; Mannocchi, G.; Marinelli, E.; Gentili, S.; Graziano, S.; Busardò, F.P.; Di Luca, N.M. Hepatotoxicity induced by Greater celandine (Chelidonium majus L.): A review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 46–52. [Google Scholar]
- ESCOP 2003, EMA Final Assessment Report. 13 September 2011 EMA/HMPC/369801/2009 Committee on Herbal Medicinal Products (HMPC). Available online: https://pdfs.semanticscholar.org/1aaf/394d1e4b8e9f342a307397644e7eb946c7ca.pdf. (accessed on 13 September 2011).
- Noureini, S.K.; Esmaeili, H.; Abachi, F.; Khiali, S.; Islam, B.; Kuta, M. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay. Biochim. Biophys. Acta 2017, 1861, 2020–2030. [Google Scholar] [CrossRef] [Green Version]
- Ernst, E.; Schmidt, K. Ukrain–a new cancer cure? A systematic review of randomised clinical trials. BCM Cancer 2005, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Moro, P.A.; Cassetti, F.; Giugliano, G.; Falce, M.T.; Mazzanti, G.; Menniti-Ippolito, F.; Raschetti, R.; Santuccio, C. Hepatitis from Greater celandine (Chelidonium majus L.): Review of literature and report of a new case. J. Ethnopharmacol. 2009, 124, 328–332. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfiled, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopytko, Y.F.; Dargaeva, T.D.; Sokolskaya, T.A.; Grodnitskaya, E.I.; Kopnin, A.A. New methods for the quality control of a homeopathic matrix tincture of greater celandine. Pharm. Chem. J. 2005, 39, 603–609. [Google Scholar] [CrossRef]
- Deng, A.J.; Zhang, Z.H.; Li, Q.; Ma, L.; Qin, H.L. Two new hopanetype triterpenes from the aerial part of Chelidonium majus. Phytochem. Lett. 2016, 17, 75–78. [Google Scholar] [CrossRef]
- Kwasniewski, V. Untersuchungen über die nichtalkaloidschen Inhaltstoffe des Schöllkrauts (Chelidonium majus L.). Pharmazie 1958, 13, 3363–3364. [Google Scholar]
- Hansel, R.; Keller, K.; Rimpler, H.; Schneider, G. Hangers Handbuchder Pharmazeutischen Praxis; Springer: Berlin/Heilderberg, Germany, 1992. [Google Scholar]
- Hahn, R.; Nahrstedt, A. Hydroxycinnamic acid derivatives, caffeoylmalic and new caffeoylaldonic acid esters, from Chelidonium majus. Planta Med. 1993, 59, 71–75. [Google Scholar] [CrossRef]
- Granica, S.; Piwowarski, J.P.; Randazzo, A.; Schneider, P.; Żyżyńska-Granica, B.; Zidorn, C. Novel stilbenoids, including cannabispiradienone glycosides, from Tragopogon tommasinii (Asteraceae, Cichorieae) and their potential anti-inflammatory activity. Phytochemistry 2015, 117, 254–266. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Świerczewska, A.; Granica, S. Bioactive constituents of Lamium album L. as inhibitors of cytokine secretion in human neutrophils. Molecules 2018, 23, 2770. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 201, 189–195. [Google Scholar] [CrossRef]
- David, J.M.; Dominguez, C.; Hamilton, D.H.; Palena, C. The IL-8/IL-8R Axis: A double agent in tumor immune resistance. Vaccines (Basel) 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Sowa, I.; Zielinska, S.; Sawicki, J.; Bogucka-Kocka, A.; Staniak, M.; Bartusiak-Szczesniak, E.; Podolska-Fajks, M.; Kocjan, R.; Wojciak-Kosior, M. Systematic evaluation of chromatographic parameters for isoquinoline alkaloids on XB-C18 core-shell column using different mobile phase compositions. J. Anal. Methods Chem. 2018, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Staniak, M.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Dresler, S.; Tyszczuk-Rotko, K. Applicability of a monolithic column for separation of isoquinoline alkalodis from Chelidonium majus extract. Molecules 2019, 24, 3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyum, A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand. J. Clin. Lab. Investig. 1968, 97, 51–76. [Google Scholar]
Sample Availability: Samples of the plant extract are available from the authors. |
No | Compound | Retention Time (min) | Parent Ion (m/z) | Product Ion (m/z) | Ion Mode | Content (µg/g) |
---|---|---|---|---|---|---|
1. | malic acid | 1.08 | 133.1 | 115, 71 | − | p |
2. | trans-aconitic acid | 1.15 | 172.9 | 85, 129 | − | p |
3. | quinic acid | 1.3 | 191 | 85, 93 | − | p |
4. | protocatechuic acid | 1.54 | 153 | 109, 108 | − | LOQ |
5. | vanillic acid | 2.37 | 167.3 | 151.9, 107.9 | − | LOD |
6. | trans-caffeic acid | 2.71 | 179.2 | 135, 134, 89 | − | p |
7. | salicylic acid | 2.79 | 137.3 | 93, 65.05, 44.8 | − | LOD |
8. | hydroxybenzoic acid | 2.85 | 137.3 | 93 | − | LOQ |
9. | p-coumaric acid | 3.97 | 163.2 | 119.1, 93.1, 117 | − | p |
10. | rosmarinic acid | 4.98 | 359.1 | 161, 197.15 | − | LOD |
11. | vanillin | 5.15 | 151.2 | 136, 91.85, 108 | − | p |
12. | protopine derivative | 6.75 | 354 | 320, 260, 196 | + | p |
13. | allocryptopine | 6.80 | 369.6 | 352, 187.95, 290 | + | 98.94 ± 0.02 |
14. | quinine sulfate | 7.00 | 747.4 | 325.1 | + | p |
15. | coptisine | 7.50 | 320.1 | 291.95, 204.05, 262.05 | + | 1077.06 ± 26.24 |
16. | berberine | 7.95 | 336.4 | 320, 292, 321.1 | + | 722.62 ± 19.25 |
17. | quercetin | 8.34 | 301.1 | 151.05, 65, 121 | − | LOD |
18. | chelidonine derivative | 8.84 | 370 | 356, 339 | + | p |
19. | chelidonine | 9.56 | 353.8 | 275, 189, 247 | + | 1181.41 ± 72.78 |
20. | chelerythrine | 10.44 | 348.1 | 332, 304, 333 | + | 1761.22 ± 33.80 |
21. | tetrahydroberberine | 10.55 | 340 | 176, 149 | + | p |
22. | tetrahydrocoptisine | 11.10 | 324 | 176, 149 | + | p |
23. | coptisine derivative | 11.20 | 324 | 190 | + | p |
24. | sanguinarine | 11.80 | 332.1 | 274.1, 316.95, 246 | + | 1373.80 ± 27.50 |
25. | protopine | 12.76 | 320.2 | 303.2, 107, 123.85 | + | p |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, S.; Czerwińska, M.E.; Dziągwa-Becker, M.; Dryś, A.; Kucharski, M.; Jezierska-Domaradzka, A.; Płachno, B.J.; Matkowski, A. Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils. Molecules 2020, 25, 842. https://doi.org/10.3390/molecules25040842
Zielińska S, Czerwińska ME, Dziągwa-Becker M, Dryś A, Kucharski M, Jezierska-Domaradzka A, Płachno BJ, Matkowski A. Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils. Molecules. 2020; 25(4):842. https://doi.org/10.3390/molecules25040842
Chicago/Turabian StyleZielińska, Sylwia, Monika Ewa Czerwińska, Magdalena Dziągwa-Becker, Andrzej Dryś, Mariusz Kucharski, Anna Jezierska-Domaradzka, Bartosz J. Płachno, and Adam Matkowski. 2020. "Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils" Molecules 25, no. 4: 842. https://doi.org/10.3390/molecules25040842
APA StyleZielińska, S., Czerwińska, M. E., Dziągwa-Becker, M., Dryś, A., Kucharski, M., Jezierska-Domaradzka, A., Płachno, B. J., & Matkowski, A. (2020). Modulatory Effect of Chelidonium majus Extract and Its Alkaloids on LPS-Stimulated Cytokine Secretion in Human Neutrophils. Molecules, 25(4), 842. https://doi.org/10.3390/molecules25040842